

Lecture Notes in Computer Science 4966
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bernhard Beckert Reiner Hähnle (Eds.)

Tests and Proofs

Second International Conference, TAP 2008
Prato, Italy, April 9-11, 2008
Proceedings

13

Volume Editors

Bernhard Beckert
University of Koblenz-Landau
Dept. of Computer Science
Universitätsstrasse 1, 56072 Koblenz, Germany
E-mail: beckert@uni-koblenz.de

Reiner Hähnle
Chalmers University of Technology
Dept. of Computer Science and Engineering
41296 Göteborg, Sweden
E-mail: reiner@cs.chalmers.se

Library of Congress Control Number: 2008924177

CR Subject Classification (1998): D.2.4-5, F.3, D.4, C.4, K.4.4, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-79123-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79123-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12255030 06/3180 5 4 3 2 1 0

Preface

This volume contains the research papers, invited papers, and abstracts of tu-
torials presented at the Second International Conference on Tests and Proofs
(TAP 2008) held April 9–11, 2008 in Prato, Italy.

TAP was the second conference devoted to the convergence of proofs and
tests. It combines ideas from both areas for the advancement of software quality.

To prove the correctness of a program is to demonstrate, through impeccable
mathematical techniques, that it has no bugs; to test a program is to run it with
the expectation of discovering bugs. On the surface, the two techniques seem
contradictory: if you have proved your program, it is fruitless to comb it for
bugs; and if you are testing it, that is surely a sign that you have given up on
any hope of proving its correctness. Accordingly, proofs and tests have, since the
onset of software engineering research, been pursued by distinct communities
using rather different techniques and tools.

And yet the development of both approaches leads to the discovery of com-
mon issues and to the realization that each may need the other. The emergence
of model checking has been one of the first signs that contradiction may yield
to complementarity, but in the past few years an increasing number of research
efforts have encountered the need for combining proofs and tests, dropping ear-
lier dogmatic views of their incompatibility and taking instead the best of what
each of these software engineering domains has to offer.

The first TAP conference (held at ETH Zurich in February 2007) was an
attempt to provide a forum for the cross-fertilization of ideas and approaches
from the testing and proving communities. For the 2008 edition we found the
Monash University Prato Centre near Florence to be an ideal place providing a
stimulating environment.

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
as well as additional referees for their great effort and professional work in the
review and selection process. Their names are listed on the following pages.

In addition to the contributed papers, the program included three excellent
keynote talks. We are grateful to Michael Hennell (LDRA Ltd., Cheshire, UK),
Orna Kupferman (Hebrew University, Israel), and Elaine Weyuker (AT&T Labs
Inc., USA) for accepting the invitation to address the conference.

Two very interesting tutorials were part of TAP 2008: “Parameterized Unit
Testing with Pex” (J. de Halleux, N. Tillmann) and “Integrating Verification
and Testing of Object-Oriented Software” (C. Engel, C. Gladisch, V. Klebanov,
and P. Rümmer). We would like to express our thanks to the tutorial presenters
for their contribution. Extended abstracts of the tutorials are included in this
proceedings volume.

VI Preface

It was a team effort that made the conference so successful. We are grateful
to the Conference Chair and the Steering Committee members for their sup-
port. And we particularly thank Christoph Gladisch, Beate Körner, and Philipp
Rümmer for their hard work and help in making the conference a success. In
addition, we gratefully acknowledge the generous support of Microsoft Research
Redmond, who financed an invited speaker.

April 2008 Bernhard Beckert
Reiner Hähnle

Organization

Conference Chair

Bertrand Meyer ETH Zurich, Switzerland

Program Committee Chairs

Bernhard Beckert University of Koblenz, Germany
Reiner Hähnle Chalmers University, Gothenburg, Sweden

Program Committee

Bernhard Aichernig TU Graz, Austria
Michael Butler University of Southampton, UK
Patrice Chalin Concordia University Montreal, Canada
T. Y. Chen Swinburne University of Technology, Australia
Yuri Gurevich Microsoft Research, USA
Dick Hamlet Portland State University, USA
William Howden University of California at San Diego, USA
Daniel Jackson MIT, USA
Karl Meinke KTH Stockholm, Sweden
Peter Müller Microsoft Research, USA
Tobias Nipkow TU München, Germany
Andrea Polini University of Camerino, Italy
Robby Kansas State University, USA
David Rosenblum University College London, UK
Wolfram Schulte Microsoft Research, USA
Natasha Sharygina CMU & University of Lugano, Switzerland
Betti Venneri University of Florence, Italy
Burkhart Wolff ETH Zurich, Switzerland

Additional Referees

Michele Boreale
Roberto Bruttomesso
Myra Cohen
John Colley

Mads Dam
Andrew Edmunds
Viktor Kuncak
Rupak Majumdar

Karol Ostrovsky
Edgar Pek
Rosario Pugliese
Steffen Schlager

VIII Organization

Steering Committee

Yuri Gurevich Microsoft Research, USA
Bertrand Meyer ETH Zurich, Switzerland

Organizing Committee

Christoph Gladisch University of Koblenz, Germany
Philipp Rümmer Chalmers University, Gothenburg, Sweden

Sponsoring Institutions

Microsoft Research Redmond, USA
Chalmers University of Technology, Gothenburg, Sweden
University of Koblenz-Landau, Germany
ETH Zurich, Switzerland

Table of Contents

Invited Talks

The First Thirty Years: Experience with Software Verification 1
Michael Hennell

Vacuity in Testing . 4
Thomas Ball and Orna Kupferman

What Can Fault Prediction Do for YOU? . 18
Elaine J. Weyuker and Thomas J. Ostrand

Research Papers

Equivalence Checking for a Finite Higher Order π-Calculus 30
Zining Cao

Finding Counter Examples in Induction Proofs . 48
Koen Claessen and Hans Svensson

A Logic-Based Approach to Combinatorial Testing with Constraints 66
Andrea Calvagna and Angelo Gargantini

Functional Testing in the Focal Environment . 84
Matthieu Carlier and Catherine Dubois

Bounded Relational Analysis of Free Data Types . 99
Andriy Dunets, Gerhard Schellhorn, and Wolfgang Reif

Static Analysis Via Abstract Interpretation of the Happens-Before
Memory Model . 116

Pietro Ferrara

Pex – White Box Test Generation for .NET . 134
Nikolai Tillmann and Jonathan de Halleux

Non-termination Checking for Imperative Programs 154
Helga Velroyen and Philipp Rümmer

Tutorials

Parameterized Unit Testing with Pex . 171
Jonathan de Halleux and Nikolai Tillmann

X Table of Contents

Integrating Verification and Testing of Object-Oriented Software 182
Christian Engel, Christoph Gladisch, Vladimir Klebanov, and
Philipp Rümmer

Author Index . 193

The First Thirty Years:

Experience with Software Verification

Michael Hennell

Technical Director
LDRA ltd

Portside, Monks Ferry
Cheshire, CH41 5LH

UK
Michael.hennell@ldra.com

The author started systematic testing in the early seventies, formed LDRA Ltd
in 1975, and having stayed in business ever since has acquired considerable ex-
perience. The verification tool market is small, mainly embedded systems, and
strongly customer driven. Other markets still believe that black-box testing does
the job!

In the past the requirements were humble, basically, to measure the effective-
ness of test data. Programs were largely simple and very carefully written. They
probably had a strong mathematical basis.

Then came requirements for metrics and structured programming verification.
At this point there also came ambiguity, false expectations and confusion. How do
you measure the metric, what does it mean, how can the metrics be compounded,
etc.? As more people become involved carelessness entered the game and so
programming rules came important, followed by data flow analysis, information
flow analysis computational analysis and other defect finding techniques.

Programs originally were small (less than 20k LOC), held in one file and
implemented in a language which had few defects but even then, as now the
compilers were rubbish.

Today projects are huge, millions of lines of code, held in thousands of files.
The files are themselves big (4 million lines in one file), and can have highly com-
plex inter file structures. The user’s knowledge of the system can be minimal:
they may even be unable to find where all the bits are stored. The implementa-
tion languages are appalling but can be patched. In fact they can be transformed
into 1st class languages by recent programming rules.

Programmers frequently resent the fact that the tools are criticising their
product. This means that the verification tools work in a doubly hostile envi-
ronment, i.e., the users resent having to use the tools and the tools attempt to
analyse an ill-defined language (that implemented by the compiler).

Verification is a non-productive and potentially costly activity and hence it is
unattractive to software producers. The aim is to get verification over, with the
minimum of pain and cost. Therefore the tendency is to ship it out to low cost
countries and provide the minimum of management control (preferably none).
This is possible because a modern test tool requires no specialist skills. If there

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Michael.hennell@ldra.com

2 M. Hennell

is a regulatory authority then there might be a conflict but nothing that can’t
be patched with documents.

The requirement today is for tools which work at the speed of light, have a
low entry cost, can be used by unskilled labour and which generate minimum
levels of pain. The tools must also be highly dependable. The application area for
tools on the other hand is highly complex, multiple unspecified dialects of badly
defined languages with widely different execution platforms and environments.
In summary, there is variable syntax and widely different semantics.

The verification market is customer led but the customers are fearful and
largely not well informed. This means that any use of sophisticated methods
needs to be surreptitious to quell the fear factor.

The future will probably produce tools which automatically repair the soft-
ware although this moves the tools into another category in terms of risk and
assessment.

The emphasis is moving from technical defects towards application defects.
Currently this involves tracing requirements through the phases to unit tests.
The result is a stream of automatically generated documents showing the suc-
cessful verification of the derived requirements with complete traceability. Unit
test tools now not only totally automatically generate the drivers but can also
automatically generate the test data. Soon no doubt they will also confirm the
tests so that no human interaction is required.

The whole subject of verification is however bedevilled by un-scientific non-
sense, examples:

– “Testing cannot show the absence of errors”: it can, see e.g. mutation testing.
Note also that a test can constitute a formal proof of correctness.

– “A proof replaces the need for testing”: it doesn’t, a proof confirms that
possibly misconceived pre-conceptions are consistently applied.

Where does the mystique associated with MCDC come from? A minor (but
worthwhile) extension to branch coverage has become almost a religion. State-
ments about horrendous extra costs incurred, for example. A program with mul-
tiple conditions can be trivially rewritten without them in which case do the
costs still accrue? If not where do they go? Claims are also made that MCDC
does not detect faults. Since a trivial exercise shows that it can why are these
statements made? Experiments in which it is claimed that MCDC found no
faults in a particular project are interesting (in a minor way) but prove nothing.
It is possible that the programmers or designers were particularly good or used
some other technique to remove any faults. What is inescapable is that some
possible faults will be exposed.

Statements are also made about the relative costs of techniques, but the com-
parisons are nonsensical and if based on data then the data is old and irrelevant.
When researchers quote comparisons, e.g. method x is cheaper than testing what
is meant? Any form of testing, for example modern Dynamic Analysis to a spe-
cific metric or just some gentle hacking of test data?

In reality some programs cannot be tested, and some concepts cannot be
verified by testing. Some programs cannot be proved, and some concepts cannot

The First Thirty Years: Experience with Software Verification 3

be proved. The trick is to discern which is the appropriate way to go for a specific
project. Some of the current thinking is frightening, one company elected to
replacing unit testing with the use of a formal method, arguing on the basis of one
project in which both methods were used that they are equivalent. Unfortunately
the certification body identified one type of fault which was now missed and that
company had to do additional work. The question now is what else was missed?

Notation is another barrier to progress, each little research group jealously
guards its own definitions and view of the world, even terms like testing and
formal methods are not universally meaningful.

The realisation that no verification technique is wholly reliable or convincing
is leading to a change of thinking. The emphasis is on using complementary
techniques which provide some degree of independence in verification activities.

The way forward, surely, is to bring together the techniques at our disposal
and on a project by project basis choose those techniques which in combination
yield a cost-effective demonstration that the implemented system is the one
required and that system is fault free. Each technique needs to be subjected to
a careful critical analysis so the strengths and weaknesses can be identified. In
particular which faults or defects are identified and which ones are not?

This means that more and more mathematically based concepts will be in-
corporated into verification tools.

How can academe help? By providing a framework by means of which we can
make sensible scientifically based comparisons and measurements of verification
techniques. The days of “here is a wonderful method wot I invented and it finds
all yer faults” should be long gone.

Finally for the young, believe nothing in the literature without critical anal-
ysis. Software Engineering has delivered very little which is useful!

Vacuity in Testing

Thomas Ball1 and Orna Kupferman2

1 Microsoft Research
tball@microsoft.com
2 Hebrew University
orna@cs.huji.ac.il

Abstract. In recent years, we see a growing awareness to the impor-
tance of assessing the quality of specifications. In the context of model
checking, this can be done by analyzing the effect of applying mutations
to the specification or the system. If the system satisfies the mutated
specification, we know that some elements of the specification do not
play a role in its satisfaction, thus the specification is satisfied in some
vacuous way. If the mutated system satisfies the specification, we know
that some elements of the system are not covered by the specification.
Coverage in model checking has been adopted from the area of testing,
where coverage information is crucial in measuring the exhaustiveness
of test suits. It is now time for model checking to pay back, and let
testing enjoy the rich theory and applications of vacuity. We define and
study vacuous satisfaction in the context of testing, and demonstrate
how vacuity analysis can lead to better specifications and test suits.

1 Introduction

The realization that hardware and software systems can, and often do, have bugs
brought with it two approaches for reasoning about the correctness of systems.
In testing, we execute the system on input sequences and make sure its behavior
meets our expectation. In model checking, we formally prove that the system
satisfies its specification.

Each input sequence for the system induces a different execution, and a system
is correct if it behaves as required for all possible input sequences. Checking all
the executions of a system is an infeasible task. Testing can be viewed as a
heuristic in which the execution of only some input sequences is checked [4]. It is
therefore crucial to measure the exhaustiveness of the input sequences that are
checked. Indeed, there has been an extensive research in the testing verification
community on coverage metrics, which provide such a measure. Coverage metrics
are used in order to monitor progress of the verification process, estimate whether
more input sequences are needed, and direct simulation towards unexplored areas
of the system. Coverage metrics today play an important role in the system
validation effort [22]. For a survey on the variety of metrics that are used in
testing, see [13,20,23].

Since testing suits are typically not exhaustive, the verification community
welcomed the idea of model checking, where the system is formally proven to be

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 4–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Vacuity in Testing 5

correct with respect to all input sequences [12]. In the last few years, however,
there has been growing awareness to the importance of suspecting the system and
the specification of containing an error also in the case model checking succeeds.
The main justification of such suspects are possible errors in the (often not
simple) modeling of the system or of the behavior.

Early work on “suspecting a positive answer” concerns the fact that temporal
logic formulas can suffer from antecedent failure [2]. For example, verifying a sys-
tem with respect to the specification ϕ = AG(req → AF grant) (“every request
is eventually followed by a grant”), one should distinguish between satisfaction
of ϕ in systems in which requests are never sent, and satisfaction in which ϕ’s
precondition is sometimes satisfied. Evidently, the first type of satisfaction sug-
gests some unexpected properties of the system, namely the absence of behaviors
in which the precondition was expected to be satisfied.

In [3], Beer et al. suggested a first formal treatment of vacuity. As described
there, vacuity is a serious problem: “our experience has shown that typically
20% of specifications pass vacuously during the first formal-verification runs of
a new hardware design, and that vacuous passes always point to a real problem
in either the design or its specification or environment” [3]. The definition of
vacuity according to [3] is based on the notion of subformulas that do not affect
the satisfaction of the specification. Consider a model M satisfying a specification
ϕ. A subformula ψ of ϕ does not affect (the satisfaction of) ϕ in M if M also
satisfies all formulas obtained by modifying ψ arbitrarily. In the example above,
the subformula grant does not affect ϕ in a model with no requests. Now, M
satisfies ϕ vacuously if ϕ has a subformula that does not affect ϕ in M . A
general method for vacuity definition and detection was presented in [17] and
the problem was further studied in [1,6,7]. It is shown in these papers that for
temporal logics such as LTL, the problem of vacuity detection is in PSPACE —
not harder than model checking.

When the system is proven to be correct, and vacuity has been checked too,
there is still a question of how complete the specification is, and whether it really
covers all the behaviors of the system. It is not clear how to check completeness
of the specification. Indeed, specifications are written manually, and their com-
pleteness depends entirely on the competence of the person who writes them.
The motivation for a completeness check is clear: an erroneous behavior of the
system can escape the verification efforts if this behavior is not captured by the
specification. In fact, it is likely that a behavior not captured by the specification
also escapes the attention of the designer, who is often the one to provide the
specification.

Measuring the exhaustiveness of a specification in model checking (“do more
properties need to be checked?”) has a similar flavor as measuring the exhaus-
tiveness of a test suit in testing (“do more input sequences need to be checked?”).
Nevertheless, while for testing it is clear that coverage corresponds to activation
during the execution on the given input sequence, it is less clear what cover-
age should correspond to in model checking. Indeed, all reachable parts of the
system may be visited during the model-checking process, regardless of the role

6 T. Ball and O. Kupferman

they play in the satisfaction of the specification. Early work on coverage metrics
in model checking [15] adopted the idea of mutation testing, developed in the
context of software testing [5]. The metric in [15], later followed by [8,9,10], is
based on mutations applied to the model of the system. Essentially, a state in
the model of the system is covered by the specification if modifying the value of
a variable in the state renders the specification untrue. In [11], the authors took
the adoption of coverage from testing to model-checking one step forward and
adjusted various coverage metrics that are used in testing to the model-checking
setting. For example, branch coverage in testing checks that the test suits has led
to an execution of all branches. Accordingly, branch coverage in model checking,
studies the effect of disabling branches on the satisfaction of the specification.

In this paper we adopt the research that has been done on vacuity in the
model-checking community to the setting of testing. Essentially, as in model
checking, a test suit T passes a specification vacuously if we can modify the
specification to one that would be harder to satisfy, and still T passes. We define
and study vacuity for three settings of testing. The first setting considers the
expected extension of LTL vacuity in the context of model checking. Thus, we
check whether a given test suit could have passed even a stronger specification.

The second setting is that of run-time verification: we assume the specification
is a monitor that is executed in parallel to the system, and an input sequence
passes the test if the monitor does not get stuck on it [14]. Thus, the properties we
are checking are safety properties, and the monitor gets stuck when a violation
of the safety property has been detected. Our definition of vacuity in this setting
refers to the transitions of the monitor: a test suit passes vacuously if it passes
also with a monitor with fewer transitions.

The third setting is that of software checking: we assume the system is a
procedure that terminates, and the specification is Boolean function, to which
we feed both the input to the systems and its output. For example, the system
may be a procedure that sorts a list of numbers, and the specification is a function
that, given two lists, checks that a second list is the first list, sorted. We model
both the system and the specification in a simple programming language. Our
definition of vacuity refers to branches in the specification: a test suit passes
vacuously if it does not branch-cover the specification, i.e., not all branches of
the specification procedure are executed on the process of checking the test suit.

Our vacuity check is complementary to coverage checking. The rational behind
vacuity checking in testing is that the structure of the specification is often
different from the structure of the system: they may be designed by different
designers, and the specification may refer to properties that are irrelevant in the
system (for example, the output list being a permutation of the input list, in the
case of sorting). Thus, there are cases in which all elements of the system have
been covered, and still some elements of the specification are not covered, causing
the test suit to pass vacuously. As we demonstrate in our examples, an attempt
to cover all elements of the specification can then reveal bugs. In addition, we
show that in most cases, the complexity of detecting a vacuous pass does not

Vacuity in Testing 7

exceed that of testing. In particular, in the case of a deterministic specification,
vacuity checking can be easily combined with the testing process.

2 Vacuity in Model Checking

In this section we describe the basic definitions of vacuity. We model a system
by a sequential circuit (circuit, for short) C = 〈I, O, S, θ, δ, ρ〉, where I is a set
of input signals, O is a set of output signals, S is a set of states, θ : 2I → S is
an initialization function that maps every input assignment (that is, assignment
to the input signals) to a state, δ : S × 2I → S is a transition function that
maps every state and input assignment to a successor state, and ρ : S → 2O is
an output function that maps every state to an output assignment (that is, an
assignment to the output signals).1

Note that the interaction between the circuit and its environment is initiated
by the environment. Once the environment generates an input assignment i ∈ 2I ,
the circuit starts reacting with it from the state θ(i). Note also that the circuit
is deterministic and receptive. That is, θ(s) and δ(s, i) are defined for all s ∈ S
and i ∈ 2I , and they suggest a single state.

Given an input sequence ξ = i0, i1, . . . ∈ (2I)ω, the execution of C on ξ is the
path πξ that C traverses while reading ξ. Formally, πξ = s0, s1, . . . ∈ Sω, where
s0 = θ(i0) and for all j ≥ 0, we have sj+1 = ρ(sj , ij). The computation of C on
ξ is then the word wξ = w0, w1, . . . ∈ (2I∪O)ω such that for all j ≥ 0, we have
wj = ij ∪ρ(sj). The language of C, denoted L(C) is union of all its computations.
We sometimes refer also to executions and computations of C on finite words.

A specification to a system can be given either in terms of an LTL formula
over atomic propositions in I ∪ O (we will consider also specifications given in
terms of a monitor over the alphabet 2I∪O; this setting, however, was not yet
studied in the context of vacuity). We assume the reader is familiar with the
syntax and the semantics of LTL. We recall the definition of vacuity in model
checking.

Consider a circuit C and an LTL formula ϕ that is satisfied in C. In the single-
occurrence approach to LTL vacuity [17], we check that each of the occurrences of
a subformula of ϕ has played a role in the satisfaction of ϕ in C. Each occurrence
σ of a subformula ψ of ϕ has a polarity. The polarity is positive if σ appears
under an even number of negations, and is negative is σ appears under an odd
number of negations. When the polarity of σ is positive, replacing σ with false
results in a formula that is harder to satisfy. Dually, when the polarity is negative,
replacing σ with true results in a formula that is harder to satisfy. Let ⊥σ stand
for false if the polarity of σ is positive, and stand for true if the polarity is
negative.

We say that an occurrence σ of a subformula of ϕ does not affect the satisfac-
tion of ϕ in C if C also satisfies the formula ϕ[σ ← ⊥σ], in which σ is replaced
by the most challenging replacement. For example, if ϕ = G(¬req ∨Fack), then
1 Typically, S = 2C for a set C of control signals. Here, we are not going to refer to

the control signals, and hide them in the notation.

8 T. Ball and O. Kupferman

ϕ[req ← ⊥req] = GFack and ϕ[ack ← ⊥ack] = G¬req. A specification ϕ is vac-
uously satisfied in C (in the single-occurrence approach) if ϕ has an occurrence
of a subformula that does not affect its satisfaction in C.

The multiple-occurrence approach to LTL vacuity in model checking considers
LTL formulas augmented with universal quantification over atomic propositions.
Recall that an LTL formula over a set AP of atomic propositions (typically
AP = I ∪ O) is interpreted over computations of the form w = w0, w1, w2, . . .,
with wj ∈ 2AP . The path then satisfies a formula of the form ∀x.ϕ, where
ϕ is an LTL formula and x is an atomic proposition, if ϕ is satisfied in all the
computations that agree with w on all the atomic propositions except (maybe) x.
Thus, w |= ∀x.ϕ iff w′ |= ϕ for all w′ = w′

0, w
′
1, w

′
2, . . . such that w′

j∩(AP \{x}) =
wj ∩ (AP \ {x}) for all j ≥ 0. As with LTL, a circuit C satisfies ∀x.ϕ if all
computations of C satisfy ∀x.ϕ.

We say that a subformula ψ of ϕ does not affect the satisfaction of ϕ in C if
C also satisfies the formula ∀x.ϕ[ψ ← x], in which ψ is replaced by a universally
quantified proposition [1]. Intuitively, this means that C satisfies ϕ even with
the most challenging assignments to ψ. Finally, a specification ϕ is vacuously
satisfied in C (in the multiple-occurrence approach) if ϕ has a subformula that
does not affect its satisfaction in C.

3 Vacuity Checking in Testing

In the context of testing, we have two types of vacuous satisfaction. Consider a
system C, a specification S, and a test suit T such that all the input sequences
in T result in computations of C that satisfy S.

– Strong vacuity is independent of T , and it coincides with vacuity in model
checking. That is, some element of S does not affect the satisfaction of S
in C. As in model checking, strong vacuity suggests that C and S should be
re-examined: some behavior that the specifier expect cannot happen.

– Weak vacuity depends on T and it refers to the role that the elements of
S play in the fact that T passes. Weak vacuity suggest that either there is
strong vacuity or that more tests are needed.

We define and study vacuity for three settings of testing. The first setting
considers the expected extension of LTL vacuity in the context of model checking.
Thus, we check whether a given test suit could have passed even a stronger
specification.

The second setting is that of run-time verification: we assume the specification
is a monitor that is executed in parallel to the system, and an input sequence
passes the test if the monitor does not get stuck on it [14]. Thus, the properties we
are checking are safety properties, and the monitor gets stuck when a violation
of the safety property has been detected. Our definition of vacuity in this setting
refers to the transitions of the monitor: a test suit passes vacuously if it passes
also with a monitor with fewer transitions.

The third setting is that of software checking: we assume the system is a
procedure that terminates, and the specification is Boolean function, to which

Vacuity in Testing 9

we feed both the input to the systems and its output. For example, the system
may be a procedure that sorts a list of numbers, and the specification is a function
that, given two lists, checks that a second list is the first list, sorted. We model
both the system and the specification in a simple programming language. Our
definition of vacuity refers to branches in the specification: a test suit passes
vacuously if it does not branch-cover the specification, i.e., not all branches of
the specification procedure are executed on the process of checking the test suit.

3.1 Vacuity in LTL Specifications

We first consider specifications in LTL. Verification of a circuit C with respect to
an LTL formula ϕ amounts to checking that for all infinite sequences ξ ∈ (2I)ω ,
the execution of S on the computation of ξ satisfies ϕ. Model checking of C with
respect to ϕ is done by checking that the language of C is contained in that of
an automaton accepting exactly all the models of ϕ. Technically, this is reduced
to checking the emptiness of the product of C with an automaton accepting
exactly all the models of ¬ϕ [21]. One computational challenge is to cope with
the exponential size of the automaton, which, in the worst case, is exponential
in the length of the formula. The computational bottleneck, however, relies in
the size of C, which is typically much larger than ϕ. The alternative that testing
suggests is to examine a vector T ⊆ (2I)ω of lasso-shaped input sequences. That
is, each input sequence in T is of the form u.vω, for u, v ∈ (2I)∗. We say that T
passes ϕ in C if for all ξ ∈ T , the computation wξ of C satisfies ϕ. We define the
length of T , denoted ‖T ‖, as

∑
ξ∈T |ξ|.

As with vacuity in model checking, we say that an occurrence σ of a subfor-
mula of ϕ does not affect ϕ in C and T if wξ |= ϕ[σ ← ⊥σ] for all input sequences
ξ in T . Similarly, we say that a subformula ψ of a specification ϕ does not affect
ϕ in C and T if wξ satisfies ∀x.ϕ[ψ ← x] for all input sequences ξ in T . We then
say that T passes ϕ vacuously in C in the single-occurrence approach if some
occurrence of a subformula of ϕ does not affect ϕ in C and T , and say that T
passes ϕ vacuously in C in the multiple-occurrence approach if some subformula
of ϕ does not affect ϕ in C and T .

Theorem 1. The problem of deciding whether T passes ϕ vacuously in C is in
PTIME in the single-occurrence approach and is in PSPACE in the multiple-
occurrence approach.

Proof. In the single-occurrence approach, we go over all occurrences σ of sub-
formulas of ϕ and model-check ϕ[σ ← ⊥σ] in all computations wξ, for all ξ ∈ T .
Since LTL model checking for a single path can be done in PTIME [18], the
whole check is in PTIME.

In the multiple-occurrence approach, we go over all subformulas ψ of ϕ and
model-check ∀x.ϕ[ψ ← x] in all computations wξ, for all ξ ∈ T . Now each check
requires PSPACE, and so does the whole check.

We note that the lower bounds in Theorem 1 are open. In the single-occurrence
approach, the challenge has to do with the open problem of the complexity of

10 T. Ball and O. Kupferman

LTL model-checking with respect to a single path (known PTIME upper bound,
only an NLOGSPACE lower bound [18]). In the multiple-occurrence approach,
the challenge has to do with the open problem of the complexity of LTL vacuity
detection (known PSPACE upper bound, only an NPTIME lower bound [1]).

3.2 Vacuity in Run-Time Verification

We now turn to study specifications given by monitors. A monitor for a circuit
C = 〈I, O, S, θ, δ, ρ〉 is an automaton S = 〈2I∪O, Q, Q0, M〉, where Q is a set of
states Q0 ⊆ Q is a set of initial states, and M : Q × 2I∪O → 2Q is a transition
function that maps a state and a letter to a set of possible successor states. We
refer to the transitions of S as relations and write M(s, σ, s′) to indicate that
s′ ∈ M(s, σ). Note that while S has no acceptance condition, it may be that
M(s, σ) = ∅, in which case S gets stuck.2 A word w ∈ (2I∪O)∗ is accepted by
S if S has a run on w that never gets stuck. The language of S, denoted L(S),
is the set of words that S accepts. All safety properties can be translated to
monitors [16,19].

The complexity considerations in the setting of model checking safety prop-
erties are similar to these in LTL model checking. Verification of C with respect
to S amounts to checking that for all infinite sequences ξ ∈ (2I)ω, the execu-
tion of S on the computation of ξ never gets stuck. Model checking of C with
respect to S is done by checking that the language of C is contained in that
of S. Technically, this is reduced to checking the emptiness of the product of
C with an automaton that complements S. One computational challenges is to
cope with the complementation of S, which involves an exponential blow up.
The computational bottleneck, however, relies in the size of C, which is typically
much larger than S. The alternative that testing suggests is to examine a vector
T ⊆ (2I)∗ of finite prefixes of input sequences. We say that T passes S in C if
for all ξ ∈ T , the computation wξ of C is accepted by S.

We first describe the algorithm for checking whether T passes S in C. The
algorithm is a simple membership checking algorithm for monitors, applied
to all input sequences in T . Given an input sequence ξ = i0, i1, . . . , in−1 ∈
(2I)n, we define the product of its computation in C with S as a sequence
〈s0, R0〉, 〈s1, R1〉, . . . ,〈sn−1, Rn−1〉∈ (S×2Q)n as follows. Intuitively, s0, . . . , sn−1
is the execution of C on ξ, and Rj , for 0 ≤ j ≤ n − 1, is the set of states that
C can be in after reading the prefix of the computation on ξ up to the letter
ij. Formally, s0 = θ(i0) and R0 = Q0, and for all 0 ≤ j ≤ n + 1, we have
sj+1 = ρ(sj , ij+1) and Rj+1 = M(Rj , ij ∪ ρ(sj)). The pairs 〈sj , Rj〉 can be con-
structed on-the-fly, and the computation wξ is accepted by S if Rj �= ∅ for all
0 ≤ j ≤ n − 1.

Assume that T passes S. The traditional approach to coverage checks that
all the transitions of C have been taken during the execution of C on the input

2 Readers familiar with Büchi automata would notice that a monitor is a looping Büchi
automaton – a Büchi automaton in which all states are accepting. Here, we execute
C on finite words.

Vacuity in Testing 11

sequences in T . Here, we consider vacuity, which corresponds to coverage in
the specification. Consider a transition 〈s, σ, s′〉 ∈ M . Let S〈s,i,s′〉 denote the
monitor obtained from S by removing the transition 〈s, i, s′〉 from M . We say
that 〈s, i, s′〉 does not affect S in C and T if T also passes S〈s,i,s′〉 in C. We then
say that T passes S vacuously in C if some transition of S does not affect its
pass.

Theorem 2. The problem of checking whether T passes S vacuously in C is
NLOGSPACE-complete.

Proof. We start with the upper bound. Consider a circuit C = 〈I, O, S, θ, δ, ρ〉,
a monitor S = 〈2I∪O, Q, Q0, M〉, and a test suit T ⊆ (2I)∗. Consider an input
sequence ξ ∈ T and a transition 〈s, i, s′〉 ∈ M . It is easy to see that the problem
of deciding whether ξ is accepted by S〈s,i,s′〉 is in NLOGSPACE. Indeed, an
algorithm that guesses an accepting run has to store the location in ξ, as well
as the states in S and Q are currently visited. Since NLOGSPACE is closed
under complementation, we conclude that the problem of deciding whether ξ is
rejected by S〈s,i,s′〉 is also in NLOGSPACE.

Now, given a transition 〈s, i, s′〉, the problem of deciding whether 〈s, i, s′〉
affects S in C and T can be solved in NLOGSPACE. Indeed, by definition, 〈s, i, s′〉
affects S in C and T if there is ξ ∈ T such that ξ is rejected by S〈s,i,s′〉, and the
algorithm can guess such an input sequence ξ ∈ T and check in NLOGSPACE
that it is rejected by S〈s,i,s′〉. Again we apply the closure of NLOGSPACE under
complementation, and conclude that the problem of deciding whether a given
transition does not affect S in C and T can be solved in NLOGSPACE. Thus, an
algorithm for checking whether T passes S vacuously in C guesses a transition
〈s, i, s′〉 in M , and checks in NLOGSPACE that it does not affect S in C and T .

Hardness in NLOGSPACE can be easily proven by a reduction from reacha-
bility.

We note that the straightforward algorithm for the problem requires polynomial
time: it goes over all transitions 〈s, i, s′〉 and input sequences ξ ∈ T , and checks
whether wξ is accepted by S〈s,i,s′〉. The algorithm concludes that T passes S
vacuously in C iff there is a transition 〈s, i, s′〉 for which the answer is positive
for all input sequences.

Remark 3. When S is deterministic, things are much simpler, and it is easy
to extend the algorithm for checking whether T passes S in C so that it also
checks whether the pass is vacuous. Indeed, checking whether T passes is done by
executing the input sequences in T . When we execute an input sequence ξ ∈ T ,
we mark the transitions in M that have been traversed during the monitoring
of wξ. The test suit T then passes vacuously if not all transitions have been
marked.

The idea behind weak vacuity is that the structure of the specification is often
different from the structure of the system. Hence, a test suit may cover all the

12 T. Ball and O. Kupferman

transitions of the system, yet may not cover all the transitions of the specifica-
tion. Adding to the test suit input sequences that cover the specification may
reveal errors. We demonstrate this in Example 1 below.

Example 1. Consider the circuit C and its specification S appearing in Figure 1.
We assume that I = {req} and O = {ack}. The specification S corresponds to
the LTL formula ψ = G(req → (ack ∨ X(ack ∨ Xack))). For convenience, we
describe the input and output assignments by Boolean assertions. Note that a
single assertion may correspond to several assignment, and thus a single edge
in the figure may correspond to several transitions. For example, the self loop
in state q0 of S, which is labeled ¬req ∨ ack, stands for the three transitions
〈q0, { }, q0〉, 〈q0, {ack}, q0〉, and 〈q0, {req, ack}, q0〉. It is not hard to see that
S does not satisfy ψ (and S). For example, an input sequence of the form
req, ¬req, ¬req, ¬req, ¬req, . . . would loop forever in s0 and s2 and the first re-
quest is never acknowledged.

¬req ∨ ack

¬req

req

req

req ∧ ¬ackack

¬ack

ack

¬req

¬req

¬req

req

¬req

req

req

req

C S

¬ack

¬ack

ack

¬ack

ack

s0

s2

s4

s3

s1 q0

q1

q2

Fig. 1. A system and its monitor

Below we describe the behavior of C and S on a test suit T = {ξ1, ξ2.ξ3}, as
follows.

– ξ1 = req, req, req, ¬req, req, ¬req. The execution of C on ξ1 is π1 = s0, s3 , s2,
s0, s3, s1, and the run of S on the induced computation traverses the follow-
ing sequence of transitions: 〈q0, {req}, q1〉, 〈q1, {req, ack}, q0〉, 〈q0, {req}, q1〉,
〈q1, { }, q2〉, 〈q2, {req, ack}, q0〉, 〈q0, { }, q0〉.

– ξ2 = ¬req, ¬req, req, ¬req, req, req. The execution of C on ξ2 is π2 = s1, s1,
s0, s2, s4, s0, and the corresponding run of S is 〈q0, { }, q0〉, 〈q0, { }, q0〉,
〈q0, {req}, q1〉, 〈q1, { }, q2〉, 〈q2, {req, ack}, q0〉, 〈q0, {req}, q1〉.

– ξ3 = req, ¬req, req, ¬req. The execution of C on ξ3 is π3 = s0, s2, s4, s1, and
the corresponding run of S is 〈q0, {req}, q1〉, 〈q1, { }, q2〉, 〈q2, {req, ack}, q0〉,
〈q0, { }, q0〉.

Vacuity in Testing 13

Note that all runs are accepting, thus T passes S in C. Moreover, all the transi-
tions of C have been taken during the execution of T . Thus, T covers C, which
indicates that T satisfies some quality criteria.

Consider the transition 〈q2, {ack}, q0〉 of S. The transition does not affect
S in C and T . Indeed, it was not traversed in the three runs. We claim that
there is strong vacuity with respect to the transition 〈q2, {ack}, q0〉, and that
detecting this strong vacuity is likely to reveal the bug. To see why, note that no
computation of C generates the letter {ack}. Thus, acknowledgments are issued
only with requests. Thus, if a request is not acknowledged immediately, another
request is needed in order to issue an acknowledgement. This information should
urge the designer to test C with respect to an input vector with a single request,
which would reveal the bug. Note that the transitions 〈q0, {req, ack}, q0〉 and
〈q1, {req}, q2〉 also do not affect S in C and T , and in fact there is strong vacuity
also with respect to them.

3.3 Vacuity in Software Checking

We now turn to consider the third setting, of terminating software procedures.
We assume the system is a procedure P that terminates, and the specification
is a Boolean function S to which we feed both the input and output of P . Given
an input v to P , the Boolean value S(v, P (v)) indicates whether P satisfies the
specification modeled by S. For the definition of vacuity, we adopt the standard
branch coverage metric: all branches of S should be executed.

We consider procedures in a simple programming language, with branches
induced by the if-then-else, case, and while statements. For a Boolean function
S and a branch b, let Sb denote the function obtained from S by replacing the
statement guarded by b by “return(false)”. Given a procedure P , we say that
a branch b of S does not affect S in P if S(v, P (v)) = Sb(v, P (v)) for all input
vectors v. Then, given a procedure P , a specification S for it, and a test suit T ,
we say that a branch b does not affect S in P and T if S agrees with Sb on all
the inputs in T . That is, for all v ∈ T , we have that S(v, P (v)) = Sb(v, P (v)).
Finally, T passes S vacuously in P if some branch of S does not affect its pass.

Deciding whether a branch b does not affect S in P and T can be done by
testing T with respect to Sb. Since, however, S is deterministic, it is easy to
combine the testing of T with a vacuity check: whenever a branch of S is taken,
we mark it, and T passes S vacuously in P if we are done testing T and some
branch is still not marked. Clearly, such a branch does not affect S in P and T .

Note that finding a bug in P amounts to covering a branch in S in which false
is returned. Thus, an attempt to cover all branches is at least as challenging as
finding a bug. We therefore seek to cover all “hopeful branches” – these that can
be taken in an execution of S that returns true. In the rest of this section we
describe two examples that demonstrate the effectiveness of vacuity checking in
this setting.

Example 2. Consider the sorting program appearing in Figure 2. We use the
operator :: to denote concatenation between elements or lists. For a list of the

14 T. Ball and O. Kupferman

form x :: y :: tail, where x and y are numbers and tail is a list of numbers, the
procedure sorts the list by sorting x and y and then recursively sorting y :: tail
(in case x ≤ y) or x :: tail (in case y < x).

sort(list):
case list is

nil → nil
x :: nil → x :: nil
x :: y :: tail → if x ≤ y then return(x :: sort(y :: tail))

else return(y :: sort(x :: tail))

Fig. 2. A buggy sorting procedure

The Boolean function sorted in Figure 3 is a specification for the sorting
procedure. It gets as input two lists of numbers and returns true iff the second
list is a permutation of the first list, and the second list is sorted. For that, it
calls two Boolean functions, each checking one condition.

sorted(list, list′):
if permutation(list, list′) and sort check(list′) then return(true)

else return(false)

Fig. 3. A specification for the sorting procedure

In our example, it not hard to see that the procedure sort is correct with
respect to input vectors v of length n for which, for all 2 ≤ i ≤ n, the prefix of
length i contains all the smallest i−1 numbers in v. For example, the procedure
correctly sorts 4 :: 1 :: 2 :: 3 or 3 :: 1 :: 2 :: 5 :: 4. Note that these two vectors
branch cover sort, which indicates that a test suit consisting of them satisfies
some quality criteria. Still the procedure sort is buggy. For example, it fails on
3 :: 1 :: 2.

Assume now that the Boolean function permutation(list, list′) distinguishes
between cases where the first and last elements of list are switched in list′ and
cases it does not. Then, at attempt to cover a branch that considers the first
case would reveal the bug. Indeed, no input (of length at least three) in which
the biggest number is first and the smallest number is last, would be correctly
sorted by sort.

Example 2 shows how vacuity checking is useful in cases the specification checks
properties that are not referred to by the system. In Example 3 below we show
how vacuity checking is useful also in cases the specification need not check
additional properties, yet the structure of the system and the specification is
different.

Example 3. The procedure convert in Figure 4 gets as input a string over 0
and 1. Its goal is to replace all substrings of the form 01 by 21. It is, however,

Vacuity in Testing 15

buggy: by leaving a 00 head as is, convert ignores cases in which the second 0
is followed by 1. For example, the output of convert on 011001 is 211001, where
the correct output is 211021.

convert(list):
case list is

nil → return(nil)
1 :: tail → return(1 :: convert(tail))
0 :: 1 :: tail → return(2 :: 1 :: convert(tail))
0 :: 0 :: tail → return(0 :: 0 :: convert(tail))

Fig. 4. The procedure convert replaces a substring 01 by 21

The specification check, appearing in Figure 5, gets as input the original
string list and the output list′ of convert and it outputs true iff list′ is indeed
obtained from list by replacing all substrings of the form 01 by 21. Note that
while check looks complicated, one cannot simplify it.

check(list, list′):
case (list, list′) is

(nil, nil) → return(true)
(0 :: nil, 0 :: nil) → return(true)
(1 :: tail, 1 :: tail′) → check(tail, tail′)
(0 :: 0 :: tail, 0 :: 0 :: tail′) → check(0 :: tail, 0 :: tail′)
(0 :: 1 :: tail, 2 :: 1 :: tail′) → check(tail, tail′)
(0 :: 0 :: 1 :: tail, 0 :: 2 :: 1 :: tail′) → check(tail, tail′)
else → return(false)

Fig. 5. A specification for convert

The input 0110001 branch covers convert, and convert is correct with re-
spect to it. Indeed, convert(0110001) = 2110021, and check(0110001, 2110021)
is true. On the other hand, (0110001, 2110021) does not branch cover check. In
fact, check suffers from both strong and weak (with respect to T = {0110001})
vacuity.

Let us start with strong vacuity. We claim that the branch b = (0 :: 0 :: 1 ::
tail, 0 :: 2 :: 1 :: tail′) does not affect S in P . That is, replacing the right hand
side of b by “return(false)” results in a function that agrees with check on all
inputs generated by convert. To see this, note that in order to cover b, the input
list must contain a substring 001 that was correctly converted to 021. Let us
analyze all the possible suffixes of 001 in which convert was called.

– convert(0 :: 0 :: 1 :: tail). Then, the output would have been buggy.
– convert(0 :: 1 :: tail). Then, as the letter before 0 :: 1 :: tail was 0, our 001

substring must be a suffix of a 0001 substring (if it had been a suffix of a

16 T. Ball and O. Kupferman

1001 substring, we would have found ourselves in the previous case). Then,
convert(0001) has first converted the 00 prefix to 00 and has then converted
the 01 suffix to 21. While convert is correct, the (0 :: 0 :: tail, 0 :: 0 :: tail′)
branch of check must be applied to the 00 prefix of the substring, and then
the (0 :: 1 :: tail, 0 :: 2 :: tail′) branch is applied to the 01 suffix, thus b is
not taken.

– convert(1 :: tail). Then, as the letters before the 1 :: tail were 00, the
previous application of convert has converted the 00 to 00, and is buggy.

Detecting the strong vacuity is helpful, as it is likely to lead the programmer
to think why the designer of the specification has come up with a specification
that is more complicated than his simple convert procedure.

We now move to weak vacuity. The branch (0 :: nil, 0 :: nil) is not covered by
T . While it is easy to add an input vector with which (0 :: nil, 0 :: nil) is covered,
the fact it is not covered by a test suit that branch-covers convert should raise
a question mark, as again it means the specifier had a good reason to distinguish
between a last 0 and an internal 0, something the programmer failed to do.

References

1. Armon, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi,
M.Y.: Enhanced vacuity detection for linear temporal logic. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg
(2003)

2. Beatty, D., Bryant, R.: Formally verifying a microprocessor using a simulation
methodology. In: Proc. 31st Design Automation Conf, pp. 596–602. IEEE Com-
puter Society, Los Alamitos (1994)

3. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. Formal Methods in System Design 18(2), 141–162 (2001)

4. Bening, L., Foster, H.: Principles of verifiable RTL design – a functional coding
style supporting verification processes. Kluwer Academic Publishers, Dordrecht
(2000)

5. Budd, T.: Mutation analysis. In: PhD thesis, Yale University, New Haven (1979)
6. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular

vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005)

7. Chechik, M., Gurfinkel, A.: Extending extended vacuity. In: Hu, A.J., Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)

8. Chockler, H., Kupferman, O.: Coverage of implementations by simulating specifi-
cations. In: Proceedings of 2nd IFIP Int. Conf. on Theoretical Computer Science.
IFIP Conf. Proceedings, vol. 223, pp. 409–421. Kluwer Academic Publishers, Dor-
drecht (2002)

9. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach
to coverage in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001)

10. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic
model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 528–542. Springer, Heidelberg (2001)

Vacuity in Testing 17

11. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for formal verification.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 111–125.
Springer, Heidelberg (2003)

12. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(1999)

13. Dill, D.L.: What’s between simulation and formal verification? In: Proc. 35th De-
sign Automation Conf, pp. 328–329. IEEE Computer Society, Los Alamitos (1998)

14. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Software Tools
for Technology Transfer 6(2), 18–173 (2004)

15. Hoskote, Y., Kam, T., Ho, P.-H., Zhao, X.: Coverage estimation for symbolic model
checking. Proc. 36st Design Automation Conf., 300–305 (1999)

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

17. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Soft-
ware Tools for Technology Transfer 4(2), 224–233 (2003)

18. Markey, N., Schnoebelen, P.: Model Checking a Path. In: Amadio, R.M., Lugiez, D.
(eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

19. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting 6, 495–511 (1994)

20. Tasiran, S., Keutzer, K.: Coverage metrics for functional validation of hardware
designs. IEEE Design and Test of Computers 18(4), 36–45 (2001)

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

22. Verisity. Surecove’s code coverage technology. (2003),
http://www.verisity.com/products/surecov.html

23. Zhu, H., Hall, P.V., May, J.R.: Software unit test coverage and adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

http://www.verisity.com/products/surecov.html

What Can Fault Prediction Do for YOU?

Elaine J. Weyuker and Thomas J. Ostrand

AT&T Labs - Research, Florham Park, NJ 07932
{weyuker,ostrand}@research.att.com

Abstract. It would obviously be very valuable to know in advance
which files in the next release of a large software system are most likely
to contain the largest numbers of faults. This is true whether the goal
is to validate the system by testing or formally verifying it, or by using
some hybrid approach. To accomplish this, we developed negative bino-
mial regression models and used them to predict the expected number
of faults in each file of the next release of a system. The predictions are
based on code characteristics and fault and modification history data.
This paper discusses what we have learned from applying the model to
several large industrial systems, each with multiple years of field expo-
sure. It also discusses our success in making accurate predictions and
some of the issues that had to be considered.

1 Introduction

The main focus of our research for the past several years has been the develop-
ment of statistical models to predict the location of faults in the next release of
a large, long-lived software system. Our goal was to help testers prioritize their
testing efforts by directing them to the files likely to contain the largest num-
ber of faults, so they could test those files first and most comprehensively. Of
course, it is necessary for the entire system to be tested, but if priority is given
to the most fault-prone files, then faults should be found more quickly leaving
resources for more comprehensive testing. This should make the resulting system
more dependable, and perhaps also more economical to produce.

If a large system is to be validated using formal verification, it may not be
possible to provide that level of validation for every file of the system, and so
a subset of files may be targeted for formal verification. Typically, the most
important files would be selected to be verified, where importance is determined
by system requirements. The use of our prediction models might provide an
additional basis for selecting files for formal verification.

It is important to emphasize how this research differs from classical software
testing research, and even test prioritization algorithms. Traditionally, the goal
of software testing research is to develop algorithms or strategies to create test
suites that will expose many faults, or to design metrics to assess the effectiveness
of test case selection or generation algorithms.

The current research is orthogonal to those goals, and intended to be used in
conjunction with a test case selection method. It aims at identifying which files

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 18–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

What Can Fault Prediction Do for YOU? 19

to focus on. Once that is determined using our prediction algorithms, it is still
necessary to develop appropriate test suites based on either the software code
or the specifications, or some combination of the two.

Although our statistical models can be very useful to testers in helping them
focus attention on parts of the software system, it is also distinct from much of
the research in the area of test case prioritization. The goal of most test case
prioritization algorithms is to select a subset of an existing set of test cases to
rerun. This is usually done during the so-called regression testing phase when
parts of the test suite are being rerun to assure that changes made to the system,
either to fix identified bugs or add new functionality, have not introduced new
faults (and caused the system to regress). Since it is sometimes too expensive to
rerun the entire test suite, test case prioritization algorithms aim at identifying
those test cases that are most likely to be relevant to the code changes, in the
sense of being able to expose any faults caused by the recent changes. Our
research is also fundamentally different from that type of research. Our goal is
to help the tester to decide which files to emphasize during testing but there
is no pre-existing test suite that we are prioritizing by sorting. Thus we are
prioritizing which files to test rather than which specific test cases to reuse or
test first.

In this paper we will provide an overview of our approach and summary of our
findings. Each of the predictions was made using a negative binomial regression
model. More details about the statistical model used can be found in [20,21]. The
model was generally used to identify the 20% of the files of the system predicted
to contain the largest numbers of faults. This was accomplished by predicting
the number of faults expected to occur in the next release for each file of the
system, and then sorting those numbers in decreasing order.

Although we could obviously use the predictions to identify any percentage of
the files, we have found that the 20% of the files targeted generally contain the
vast majority of the faults and is a small enough percentage to permit focused
intensive scrutiny. The goal is to help the quality assurance team to prioritize
their efforts, not to limit the amount of work done.

The whole process is possible because in practice we typically observe a
Pareto-like distribution of faults, in which a relatively small percentage of files
contain the majority of the faults. If there were a more or less uniform distribu-
tion of faults, then it would not even be meaningful to speak about identifying
the most fault-prone files.

We have now applied our approach to six different large software systems,
with different functionality, development paradigms, implementation languages,
and levels of maturity. As we shall demonstrate, the results are strikingly similar.
Those results will be described in Section 3.

2 The Basis for Prediction

The first issue we had to consider was whether in fact there was a Pareto-like
distribution of faults, and, if so, what factors most prominently influence whether

20 E.J. Weyuker and T.J. Ostrand

or not a file is likely to be faulty. In order to determine that, we did a preliminary
study using a large inventory control system which at the time consisted of twelve
releases and had been in the field for about 3 years. We first observed that there
was a very non-uniform distribution of faults across files, with the concentration
becoming more acute as the system matured. For example, we observed that for
the first release, all of the identified faults were contained in 40% of the files. For
the release that occurred about a year later, all of the faults were concentrated
in just 16% of the files. After two years, the identified faults were all contained
in just 11% of the files, and after three years they were all contained in just 7%
of the files. The goal of this research, therefore, is to try to identify which files
are the ones that account for all or most of the faults.

We considered a number of different file attributes as well as development
process and file modification characteristics and selected those that seemed to
be most closely associated with files that proved to be problematic in future
releases. Initially our study focused on identifying characteristics most closely
associated with files that had the highest fault densities in terms of faults per
thousands of lines of code (KLOCs). This had been studied by an earlier research
group [8]. However, after discussing the matter with some of our system test
group we decided that identifying files with the highest numbers of faults was
more useful in practice.

The types of characteristics considered were the size of the file in KLOCs,
how many releases the file had been in the system, and the programming lan-
guage in which the file had been written. We also considered the maturity of the
overall system in terms of the number of releases, as well as information about
the fault and change history of the file. An important issue was to make sure
that all characteristics considered could be assessed objectively; i.e. two differ-
ent observers would answer the question in exactly the same manner. This is
important as our goal is to build a tool that can fully automate the prediction
process, requiring no expertise of the tool user, and no appreciable overhead.
The preliminary study is described in [19].

All of this information was obtained from the integrated version control/
change management system used by each of the six systems studied or from the
software code itself. Underlying this modification request system is a database
containing a substantial amount of data about every change made to the sys-
tem, whether initiated because of an observed fault, or because of a planned or
unplanned enhancement, as well as links to the actual code in each file of the
system at any given point in the system’s history.

From the codebase we were able to extract such information as the size of
the file and the programming language in which it was written. The database
contains a description of why the change is being initiated written in English,
which files were modified as a result of the modification request (MR), whether
the file was new to that release, and if not, if it was modified in previous releases,
the actual code that was added, deleted or modified, the development stage at
which the MR was initiated, the developer who made the change, how old the

What Can Fault Prediction Do for YOU? 21

Table 1. System Information for Case Study Subjects and Percentage of Faults in Top
20% of Files

System Number of Releases Years KLOC Pctg Faults Identified

Inventory 17 4 538 83%

Provisioning 9 2 438 83%

Voice Response - 2+ 329 75%

Maintenance Support A 35 9 442 83%

Maintenance Support B 35 9 384 94%

Maintenance Support C 26 7 327 84%

file is in terms of the number of releases it has been in the system, a severity
rating as well as a great deal of other information.

Some of this information proved to be useful in building predictive models, and
other information proved not to be. For example, although we initially thought
that the severity rating would be a potentially interesting predictive factor, it
in fact proved not to be. For the systems we studied, severity could range from
1 meaning that the fault had to be fixed immediately, to a severity of 4 which
means that the fault was largely cosmetic. We thought that we were particularly
interested in identifying files that would not only contain the largest numbers of
faults, but also the most critical ones as assessed by the severity rating. What we
observed was that the overwhelming majority of reported faults were classified as
Severity 3 for every system considered. For many releases there were no Severity 1
faults reported at all. Therefore severity proved not to be a useful factor.

We found the most relevant characteristics to be the size of the file (KLOCs),
whether this was the first release the file was in the system, whether the file was
changed in earlier releases, and if so, how many changes were made to that file,
whether there were faults in the file in earlier releases, and if so, how many faults
occurred in earlier releases, and the programming language used to implement
the file. These factors were weighted appropriately and used as part of both
custom-built and standardized prediction models.

3 Empirical Studies

We begin this section by providing information about each of the six software
systems that have been the subjects of our empirical studies. In Table 1 we see
a summary of the longevity (in terms of both the number of releases included
in the relevant study and number of years the system was in the field), the
size of the system in KLOCs, and the success of the predictions in terms of the
average percentage of actual detected faults that occurred in the 20% of the files
identified by our prediction model as likely to contain the largest numbers of
faults. In each case the percentage shown is averaged across all of the releases of
the system studied.

We see that each of the systems is substantial in size, containing hundreds of
thousands of lines of code. We studied systems for which we had data ranging

22 E.J. Weyuker and T.J. Ostrand

from two years to nine years, representing both relatively young and evolving
systems as well as very stable and mature systems. These systems were very dif-
ferent from the point of view of functionality and programming languages used,
as well as the development paradigm used when building the system. The first
three systems listed were developed and maintained by one large international
corporation, and the three maintenance support systems were written and main-
tained by another large international company. The latter three systems were
stand-alone subsystems of a very large maintenance support system. They were
originally written as independent systems which were later integrated into this
much larger system.

We note that the Voice Response system has a dash in the column indicating
the number of releases included in the study. We followed this system for a total
of 27 months in the field. This system used a different development paradigm
than any of the others, using what they referred to as “continuous” releases. This
means there was no regular release schedule. Since this was the fundamental unit
for prediction in our model in the sense that we predicted which would be the
most faulty files in the next release of the system, it was necessary to devise a
notion of a synthetic release in this study. The details of how that was dealt
with are described in [4]. This may explain why the prediction results were less
accurate than than those obtained for the other five systems studied.

What we see in each case, is that the prediction models we developed were
very effective at targeting the proper files. For each of the systems, including
the Voice Response system, the vast majority of actual faults detected during
testing or once the system was in the field, were contained in the 20% of the files
identified as likely to be most faulty by the models.

4 Automating the Process

For the first three systems, we built customized prediction models. In each case
we used a negative binomial regression model. Since the results obtained for these
systems were all very encouraging, we felt it was time to consider how we might
automate the process, by seeing whether we could build a general prediction
model. We recognized that without a fully automatic tool, we were not going to
be able to attract users, and the critical step in this automation would be the
development of a model based not on the characteristics of the particular system
that was the study subject, but rather based on the things we had learned by
studying the three earlier systems. We had already begun the automation of
the data extraction portion of a tool which was relatively straightforward, but
without the generalized model, automation would not be possible.

We considered a variety of different models and were pleased to observe that
the results obtained using an automatable model actually exceeded the results
obtained using the customized model. Details of this study are described in [21].

The subject system for that study was the first maintenance support system
(Maintenance Support System A in Table 1). We were especially interested in
seeing how our prediction models would behave on this system because it had

What Can Fault Prediction Do for YOU? 23

several interesting characteristics which distinguished it from the three earlier
systems we had studied.

Perhaps the most important difference from the earlier systems studied was
that it was written and maintained by a different company. Each company has
its own corporate culture, we felt, and we wondered whether or not the model
designed based on the three systems previously studied at AT&T would be ap-
plicable to this new system built by another corporation. In addition, System A
was much more mature than the earlier systems studied, having been in the
field for nine years with 35 separate releases. We wondered whether or not the
model would be suitable for the later releases. Finally, the basic functionality of
the system, and the languages used were different from those used in the earlier
systems.

A look at Table 1 confirms that the general (non-customized) model was very
effective for predicting the location of faults in System A. We have now applied
this model to Systems B and C and see that the results are similarly effective.

5 Methodological Issues

This research has been ongoing for about six years. Our ultimate goal is to build
an industrial-grade fully automated tool that will be widely used by software
testers to help prioritize their testing efforts to yield highly dependable systems
economically. It might also be used by software developers to help them de-
termine whether or not a file should be re-architected, or by people trying to
determine an appropriate subset of files to formally verify.

In this section we outline the steps needed to perform this research thereby
indicating to the reader why it has taken so long to get to this point, and why
each of the steps are necessary if we hope to transfer this research to practice.
This might help clarify why some very interesting published research never goes
farther than the small research community of which it is a part.

We have found that a program such as the one outlined below is a central
part of the research if a primary goal of the project is to ultimately impact the
way software is engineered.

The three things that are essential when performing research that will even-
tually be transferred to practitioners are making sure that the practitioners are
aware of what you are doing, making sure that they think it is relevant to their
tasks, and making sure that the ultimate form is usable by practitioners. In order
to accomplish this, here are some of the steps that we followed.

– We spoke with practitioners to determine if our goal was worthwhile and to
identify projects that might serve as potential study subjects. This addressed
the issue of making sure practitioners were aware of the work, and also
making sure it was relevant. This also provided us with projects that might
serve as subjects of future empirical studies to validate our research.

– We presented preliminary findings to practitioners to get their feedback. This
again addressed both awareness and relevance.

24 E.J. Weyuker and T.J. Ostrand

– We have performed six large empirical studies to date. They were very time
consuming and difficult to do. We believe that performing these studies was
essential for convincing practitioners of the relevance of the work. When
doing large empirical studies, you have to be prepared for the fact that not
every study will turn out to be helpful. Projects sometimes get cancelled
or your main contact point with the project may leave or be transferred
to another project, leaving you without access to necessary data. However,
the more instances of the application of your research to real projects that
you can present, the more likely other projects are to take the risk of using
your technology. These point are helpful in making practitioners aware of
the research and assessing relevance.

– We published results of our studies aimed at both researchers and practi-
tioners. Again this aids in making practitioners aware of the research.

– We invited a statistician to participate in this research.
– We are building a fully-automated tool requiring no expertise to use, and

costing little in the way of overhead for use. We believe that such a tool is
essential for wide-spread adoption of our research, and have completed much
of the implementation of the tool. The tool addresses the issue of usability.
Even if a technique can be shown to be very useful, if it requires the users to
have highly specialized expertise, or requires extensive overhead, it is unlikely
that it will be used.

One very difficult issue that often derails the assessment of interesting soft-
ware engineering research is the unavailability of a first subject system on which
to perform an empirical study. This can be very difficult both for academic re-
searchers and for people working in industrial research environments. Although
the company might be producing many large software systems which would be
ideal candidates for study, the industrial researcher may be entirely unaware of
these projects’ existence or have no access to them.

The more an industrial research center provides the opportunity to do aca-
demic-style research, and provides autonomy for researchers, the more divorced
researchers often are from their potential “customers”: the practitioners who
could actually use their research. Although it is wonderful to work in a research
center without the requirement that a development organization believes, a pri-
ori, the work to be worthwhile, it can also be a two-edged sword. We work in such
an environment, and can attest to how intellectually stimulating it is, however
it does often mean that there is a physical isolation from potential customers of
your research and projects to study.

In addition, since most research is not in a sufficiently mature state to be
useful to a project at the time an empirical study is to begin (which is why the
empirical study is being done in the first place) it is often difficult to convince
a project to be a subject because they see no direct benefit, and expect to have
to spend valuable time which is frequently in very short supply.

Our experience is that the best way to gain access to production software
systems is to have created ongoing relationships with practitioners, even though
this may require serious effort and travel on the researcher’s part. This might

What Can Fault Prediction Do for YOU? 25

involve volunteering to help with such things as test case development, test
planning and other tasks that might need doing when a project is getting near
a release date. It requires developing mutual trust and respect for each other. It
requires that the researcher understand the time constraints faced by developers
and testers. It is helpful to make it clear that you understand the risk these
practitioners are taking by participating in an empirical study.

To get our first subject system, we approached a testing manager with whom
we had had an earlier relationship. We promised to intrude very little, by asking
very few questions, and promising to look at the data without ever changing it
in any way. Because we had volunteered to help the test manager’s group on
an earlier project, she knew that we understood the realities of their environ-
ment. When asked by a project to help with the collection of metrics, we readily
volunteered to take on this responsibility.

Once we had performed the first empirical study, we presented our findings
at an in-house conference for practitioners. This gave us very valuable feedback,
and more importantly, it ultimately provided us with access to the system used
in our second empirical study.

6 Related Work

In this section we describe related research performed by other groups. This will
help provide context for our results. During the time that we have been involved
in doing this research, there has been increasing interest in the field. We believe,
however, that our research is different in several fundamental ways.

A number of research groups have performed studies which, like our prelim-
inary study [19], aim at identifying properties of software files or modules that
are associated with the most faulty entities. These studies do not involve the de-
velopment of statistical models or make predictions. [1,3,7,8,10,11,15,16,19,22].

More closely related to the current work is research that develops predictive
models that predict some characteristic of the software in the future, although
often they do not predict which files in a system will contain the largest num-
bers of faults by producing a sorted list of the files based on the predicted
numbers of faults in the next release. Papers that do make predictions in-
clude [2,6,9,12,13,14,18,23].

In this section we provide an overview of the research that is most closely
related to ours, and point out differences in the methods used, specific goals, or
results obtained.

Arisholm and Briand [2] defined a prediction model for one mid-size Java sys-
tem (110 KLOCs), using data from three releases. They used stepwise logistic
regression, and made predictions for one future release. Logistic regression clas-
sifies entities, in this case as either fault-prone or not fault-prone. In contrast we
used the negative binomial regression model which predicted a specific number
of faults that were likely to be contained in each file in the next release of the
system. In this way we were able to sort the files and make predictions about
which would be included in the worst N% of the files.

26 E.J. Weyuker and T.J. Ostrand

Denaro and Pezze [6] also used logistic regression to make predictions. They
relied on static software metrics to constructed a number of models, and selected
those models that came the closest to correctly identifying the system’s most
faulty modules. They used the open source Apache system for their studies,
using data from Apache version 1.3 to make predictions for Apache version 2.0.
They stated that their best models required 50% of the modules to be selected
to include 80% of the faults that actually were detected in Version 2.0.

Graves et al. [9] studied a large telecommunications system, considering ap-
proximately two years worth of data. They did a preliminary study that was
similar to ours to identify characteristics associated with faulty modules, and
used what they learned to build models to predict the number of faults that
would be in the next version of each module. Their models were based solely
on the fault history of the system. They worked at the module level, with each
module averaging over 30 files.

Khoshgoftaar et al. [13] used binary decision trees as the means for classifying
software modules as being in one of two categories: fault-prone or not fault-prone.
They defined fault-prone to mean that the module contained five or more faults
and used a mix of static software metrics and execution time metrics to build
their models. Their study was performed on a large industrial telecommunica-
tions system, for which they built the necessary decision tree using the first
release and evaluated their predictions using three additional releases. Success
was measured in terms of misclassification rates.

Succi et al. [23] built models to predict which classes of two small C++
projects would be fault-prone. Their models were based on the size of the class
and some of Chidamber and Kemerer’s object-oriented metrics [5]. They found
that for the models they developed, they needed to include from 43% to 48% of
the classes to include 80% of the faults.

Nagappan et al. [17] used a variety of code metrics to make predictions about
about some Microsoft software systems. They limited attention to failures ob-
served post-release. Although they found a set of metrics that worked well for
each particular system, they found that metrics were not general in the sense
that the set of metrics that made accurate predictions for one system, typically
were not useful for making predictions in other systems.

Some of the most important differences between our research and the above-
mentioned relevant papers include:

– We have validated our models by making predictions for six different sys-
tems. Most other research groups have made predictions for just a single
system. By considering multiple systems, we are able to study the extent
to which there are similarities between systems in spite of differences in
languages, functionality, and other characteristics. By validating these simi-
larities we were able to develop a non-custom prediction model that allowed
us to automate the prediction process, providing a tool that can be used by
practitioners.

– We have made predictions for well over one hundred and twenty releases
across the six different systems. Most other research groups have made just

What Can Fault Prediction Do for YOU? 27

a single or a few such predictions. Again this allows us to assess the generality
of our model.

– We provide the user with an ordered list of the predicted most faulty files.
Most other research groups simply predict whether software entities will
or will not contain at least one fault. We are therefore able to assess the
effectiveness of our predictions in terms of the percentage of faults included
in identified files.

– We have worked at the relatively fine-grained file level. Several other research
groups have worked at the coarser module level, where a module typically
consists of multiple files, often a substantial number of files. Working at a
finer level of granularity facilitates fault localization.

– We have developed models that, on average, accurately identify the most
faulty files. Table 1 summarizes our results. Of the relatively few other re-
search groups that tried to predict which files would account for the largest
number of faults rather than just categorizing them as likely to contain a
fault or not, most were far less accurate.

7 Conclusions

We have described a relatively mature technology that we have developed to
predict which files in a large long-lived software system are likely to contain the
largest numbers of faults in the next release. We have validated our prediction
models by doing a series of six large empirical studies using industrial software
systems, averaging over four hundred thousand lines of code per system. We
studied several years worth of data for these systems and made predictions for
well over one hundred and twenty releases of the systems. We see that for each
of the systems to which we have applied our negative binomial regression model,
the 20% of the files identified by the model contained the vast majority of the
actual detected faults in the systems, typically averaging roughly 83% of the
faults.

We have now almost completed the automation of the process with both the
data extraction and fault prediction portions of a tool having been implemented.
We currently have interest from the team that manages the integrated change
management/version control system, and are discussing how our tool can be
integrated into that system so that any tester or developer that uses the change
management system can take advantage of our fault prediction capabilities. We
look forward to the day when this is a standard weapon in the arsenal used by
testers to help them prioritize their testing efforts.

In the future, we would like to investigate how this work can be applied to help
people doing verification of systems to better target the most appropriate files for
formal verification. This might involve both the obvious idea of identifying the
files most likely to contain faults as candidates for formal verification, or might
involve modifying the definition of what we mean when we talk about faults to
target files with other particular characteristics. One might envision, for example,
performing some sort of semantic analysis on information in the modification

28 E.J. Weyuker and T.J. Ostrand

request database to select certain sorts of code entities as potentially worthy of
formal verification.

We also expect to continue our examination of other types of predictive models
besides the negative binomial regression model, and intend to test the impact
of incorporating semantic analysis rules into the selection of what constitutes
a fault. In addition, we are interested in studying other ways of assessing the
effectiveness of our prediction algorithms beyond determining the percentage of
faults included in the identified files.

References

1. Adams, E.N.: Optimizing Preventive Service of Software Products. IBM J. Res.
Develop 28(1), 2–14 (Jan, 1984) (1984)

2. Arisholm, E., Briand, L.C.: Predicting Fault-prone Components in a Java Legacy
System. In: Proc. ACM/IEEE ISESE, Rio de Janeiro (2006)

3. Basili, V.R., Perricone, B.T.: Software Errors and Complexity: An Empirical In-
vestigation. Communications of the ACM 27(1), 42–52 (1984)

4. Bell, R.M., Ostrand, T.J., Weyuker, E.J.: Looking for Bugs in All the Right Places.
In: Proc. ACM/International Symposium on Software Testing and Analysis (ISSTA
2006), July 2006, pp. 61–71. Portland, Maine (2006)

5. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design.
IEEE Trans. on Software Engineering 20(6), 476–493 (1994)

6. Denaro, G., Pezze, M.: An Empirical Evaluation of Fault-Proneness Models. In:
Proc. International Conf on Software Engineering (ICSE 2002), Miami, USA (May
2002)

7. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does Code Decay?
Assessing the Evidence from Change Management Data. IEEE Trans. on Software
Engineering 27(1), 1–12 (2001)

8. Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Com-
plex Software System. IEEE Trans. on Software Engineering 26(8), 797–814 (2000)

9. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting Fault Incidence Using
Software Change History. IEEE Trans. on Software Engineering 26(7), 653–661
(2000)

10. Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust Prediction of Fault-Proneness by
Random Forests. In: Proc. ISSRE 2004, Saint-Malo, France (Nov. 2004)

11. Hatton, L.: Re examining the Fault Density - Component Size Connection. In:
IEEE Software, March/April, pp. 89–97 (1997)

12. Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S., Goel, N.: Early Quality Pre-
diction: A Case Study in Telecommunications. In: IEEE Software, (Jan 1996) pp.
65–71 (1996)

13. Khoshgoftaar, T.M., Allen, E.B., Deng, J.: Using Regression Trees to Classify
Fault-Prone Software Modules. IEEE Trans. on Reliability 51(4), 455–462 (2002)

14. Mockus, A., Weiss, D.M.: Predicting Risk of Software Changes. In: Bell Labs Tech-
nical Journal, April-June 2000, pp. 169–180 (2000)

15. Moller, K.-H., Paulish, D.J.: An Empirical Investigation of Software Fault Distribu-
tion. In: Proc. IEEE First International Software Metrics Symposium, Baltimore,
May 21-22, 1993, pp. 82–90 (1993)

16. Munson, J.C., Khoshgoftaar, T.M.: The Detection of Fault-Prone Programs. IEEE
Trans. on Software Engineering 18(5), 423–433 (1992)

What Can Fault Prediction Do for YOU? 29

17. Nagappan, N., Ball, T., Zeller, A.: Mining Metrics to Predict Component Failures.
In: Nagappan, N., Ball, T. (eds.) Proc. Int. Conf. on Software Engineering, May
2006, pp. 452–461. Shanghai, China (2006)

18. Ohlsson, N., Alberg, H.: Predicting Fault-Prone Software Modules in Telephone
Switches. In: IEEE Trans. on Software Engineering, 22th edn., 12, December 1996,
pp. 886–894 (1996)

19. Ostrand, T., Weyuker, E.J.: The Distribution of Faults in a Large Industrial Soft-
ware System. In: Proc. ACM/International Symposium on Software Testing and
Analysis (ISSTA2002), Rome, Italy, July 2002, pp. 55–64 (2002)

20. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the Location and Number
of Faults in Large Software Systems. IEEE Trans. on Software Engineering 31(4)
(2005)

21. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Automating Algorithms for the Identifi-
cation of Fault-Prone Files. In: Proc. ACM/International Symposium on Software
Testing and Analysis (ISSTA 2007), London, England (July 2007)

22. Pighin, M., Marzona, A.: An Empirical Analysis of Fault Persistence Through
Software Releases. In: Proc. IEEE/ACM ISESE 2003, pp. 206–212 (2003)

23. Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical Assessment of the
Models for Identification of Defect-prone Classes in Object-oriented Commercial
Systems Using Design Metrics. Journal of Systems and Software 65(1), 1–12 (2003)

Equivalence Checking for a Finite Higher Order

π-Calculus�

Zining Cao

Department of Computer Science and Technology
Nanjing University of Aero. and Astro.

Nanjing 210016, P.R. China
caozn@nuaa.edu.cn

Abstract. In this paper, we present an algorithm for checking weak
context bisimulation over a finite higher order π-calculus, called linear
higher order π-calculus. To achieve this aim, we propose a new bisimula-
tion, called linear normal bisimulation, and furthermore prove the equiv-
alence between context bisimulation and linear normal bisimulation for
such linear higher order π-calculus. The correctness of this algorithm is
also demonstrated. At last, we give a complete inference system for linear
higher order π-calculus.

1 Introduction

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dis-
sertation [13]. In higher order π-calculus, processes and abstractions over pro-
cesses of arbitrary high order can be communicated. Some interesting equiva-
lences for higher order π-calculus, such as barbed equivalence, context bisimu-
lation and normal bisimulation, were presented in [13]. Barbed equivalence can
be regarded as a uniform definition of bisimulation for a variety of concurrent
calculi. Context bisimulation is a very intuitive definition of bisimulation for
higher order π-calculus, but it is heavy to handle, due to the appearance of
universal quantifications in its definition. In the definition of normal bisimula-
tion, all universal quantifications disappeared, therefore normal bisimulation is a
very economic characterisation of bisimulation for higher order π-calculus. The
relation between the three equivalences has been studied in [3,13,14].

In [15,16], Thomsen presented a higher order calculus, called CHOCS. Higher
order bisimulation was presented for CHOCS as an equivalence relation, which
requires bisimilarity rather than identity of the processes emitted in a higher
order output action. Higher order bisimulation appears to work well in the calcu-
lus CHOCS where restriction is a dynamic binding. For higher order π-calculus,
higher order bisimulation seems troublesome because unlike CHOCS, restriction
is a static binder in higher order π-calculus [13].

� This work was supported by the National Natural Science Foundation of China under
Grant 60473036.

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 30–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Equivalence Checking for a Finite Higher Order π-Calculus 31

Developing efficient algorithms for checking bisimulation equivalences for var-
ious process calculi is an important research topic in the development of process
theories. An efficient algorithm for checking bisimulation equivalences allows us
to automatically verify systems specified in process calculi. There has been a lot
of work on bisimulation checking algorithms for CCS and π-calculus [5,6,8].

For higher order π-calculus, the checking algorithm is in general difficult to
give. The main problem lies in that universal quantifications appear in the def-
inition of bisimulations for higher order π-calculus. For instance, to state the
equality between two processes with higher order input prefixing, one has to
state the equality between the residuals under all possible process substitutions.
To overcome this problem, we have to seek an efficient characterisation of context
bisimulation.

One of aims of this paper is to develop an efficient algorithm for checking
context bisimulation equivalence in the higher order π-calculus. To achieve this
aim, we first define a finite higher order π-calculus, called linear higher order π-
calculus. Roughly speaking, a linear process is a process in which a variable may
occur at most once. Then we present a new bisimulation, called linear normal
bisimulation, whose definition is a variant of normal bisimulation. We study the
relation between linear normal bisimulation and context bisimulation, and prove
that weak linear normal bisimulation coincides with both weak context bisimu-
lation and weak higher order bisimulation for a linear higher order π-calculus.
Since weak context bisimulation is equivalent to weak normal bisimulation for
such a linear higher order π-calculus, all bisimulations appeared in literatures
are equivalent to each other. A checking algorithm with respect to weak context
bisimulation, WBC, is then proposed for such linear higher order π-calculus.
Based on the equivalence between weak linear normal bisimulation and weak
context bisimulation, the correctness of WBC is proved for weak context bisim-
ulation.

Providing sound and complete axiomatisations for various equivalence rela-
tions has been one of the major research topics in the development of process
theories. A complete axiomatization not only allows us to reason about process
behaviors by syntactic manipulation, but also helps to understand the proper-
ties of the operators used to build complex processes from simpler components.
There has been a lot of work on algebra theory for CCS and π-calculus [2,7,9,12].

For the higher order π-calculus, the algebra theory is in general difficult to
give. The main problem lies in that universal quantifications appear in the def-
inition of bisimulations for the higher order π-calculus. For instance, to equal
two processes with higher order input prefixing, one has to equal the residuals
under all possible process substitutions. An easy approach to the axiomatization
of higher order π-calculus is to introduce an infinite number of premises, but this
rule is obviously of little practical use. Another aims of this paper is to provide
a complete inference system for context congruence for linear higher order π-
calculus. A complete inference system, named WCE, for context congruence is
given in this paper.

32 Z. Cao

This paper is organized as follows: In Section 2 we briefly review higher order
π-calculus. In Section 3 we present a linear higher order π-calculus, and define a
new bisimulation, called linear normal bisimulation, over this calculus. Further-
more the equivalence between weak linear normal bisimulation and weak context
bisimulation is proven. In Section 4 we propose a checking algorithm for weak
context bisimulation over linear higher order π-calculus, and furthermore study
its correctness. In Section 5 we give an inference system for linear higher order
π-calculus. The paper is concluded in Section 6.

2 Higher Order π-Calculus

2.1 Syntax and Labelled Transition System of Higher Order
π-Calculus

In this section we briefly recall the syntax and labelled transition system of the
higher order π-calculus. We only focus on a second-order fragment of the higher
order π-calculus [14], i.e., there is no abstraction in this fragment.

We assume a set N of names, ranged over by a, b, c, ..., x, y... and a set V ar
of process variables, ranged over by X, Y, Z, U, We use E, F, P, Q, ... to stand
for processes. The class of processes is denoted as Pr.

We first give the grammar for the higher order π-calculus processes as follows:

P ::= 0 | U | π1.P1 + ... + πn.Pn | P1|P2 | (νx)P | !P
πi is called prefix and can be an input or an output or a tau prefix.
πi ::= τ | l | l | a(U) | a〈P 〉
Informally, 0 denotes inaction. Operator + represents the nondeterministic

choice. τ .P + S can perform a tau action, then continues as P . l.P + S can
perform a first order input action at name l, then continues as P . l.P + S can
perform a first order output action at name l, then continues as P . a(U).P + S
can receive a process at name a, say E, then continues as P{E/U}, i.e., the
process obtained by replacing each free occurrence of U in P by E. a〈E〉.P + S
can perform an output action at name a emitting process E, then continues
as P . P1|P2 is a parallel composition of two processes P1 and P2. (νa)P is
the restriction operator, which makes name a local to process P . !P stands,
intuitively, for an infinite number of copies of P in parallel.

In each process of the form (νa)P the occurrence of a is bound within P . An
occurrence of a in a process is said to be free iff it does not lie within the scope
of a bound occurrence of a. The set of names occurring free in P is denoted
fn(P). An occurrence of a name in a process is said to be bound if it is not free,
we write the set of bound names as bn(P). n(P) denotes the set of names of P ,
i.e., n(P) = fn(P) ∪ bn(P). The definition of substitution in process terms may
involve renaming of bound names when necessary to avoid name capture.

Higher order input prefix a(U).P binds all free occurrences of U in P . The
set of variables occurring free in P is denoted fv(P). We write the set of bound
variables as bv(P). A process is closed if it has no free variable; it is open if it
may have free variables. Prc is the set of all closed processes.

Equivalence Checking for a Finite Higher Order π-Calculus 33

Processes P and Q are α-convertible, P ≡α Q, if Q can be obtained from
P by a finite number of changes of bound names and variables. For example,
(νb)(a〈b(U).U〉.0) ≡α (νc)(a〈c(U).U〉.0).

The actions are given by
α ::= τ | l | l | a〈P 〉 | a〈P 〉 | (νb̃)a〈P 〉
We write Act for the set of actions. bn(α) represents the set of names bound

in α, which is {b̃} if α is (νb̃)a〈P 〉 and ∅ otherwise. n(α) denotes the set of names
that occur in α.

The operational semantics of higher order processes is given in Table 1.

Table 1. Labelled transition system of higher order π-calculus

ALP :
P

α−→ P ′

Q
α−→ Q′

P ≡α Q, P ′ ≡α Q′ TAU : τ.P
τ−→ P

OUT1 : l.P
l−→ P IN1 : l.P

l−→ P

OUT2 : a〈E〉.P a〈E〉−→ P IN2 : a(U).P
a〈E〉−→ P{E/U}

SUM :
P

α−→ P ′

P + Q
α−→ P ′

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM1 :
P

l−→ P ′ Q
l−→ Q′

P |Q τ−→ P ′|Q′

COM2 :
P

(νb̃)a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = ∅

COM3 :
P

a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ P ′|Q′

RES :
P

α−→ P ′

(νa)P
α−→ (νa)P ′

a /∈ n(α) REP :
P |!P α−→ P ′

!P
α−→ P ′

OPEN :
P

(νc̃)a〈E〉−→ P ′

(νb)P
(νb,c̃)a〈E〉−→ P ′

a 	= b, b ∈ fn(E) − c̃

2.2 Weak Bisimulations in Higher Order π-Calculus

Context and normal bisimulations were presented in [13,14] to describe the be-
havioral equivalences for higher order π-calculus. Context bisimulation is an
intuitive definition of bisimulation in higher order π-calculus and is regarded
as a standard bisimulation for higher order π-calculus. A drawback of context
bisimulation is the universal quantifications on input and output actions, which
can make it hard, in practice, to use this equivalence. A simpler characterisation
of context bisimulation is normal bisimulation, which does not require universal
quantifications but contains the replication operator.

Let us review the definition of weak context and normal bisimulations. In the
following, we abbreviate P{E/U} as P 〈E〉, and we use τ̂=⇒ to abbreviate the

reflexive and transitive closure of τ−→, and use α=⇒ to abbreviate τ̂=⇒ α−→ τ̂=⇒.

34 Z. Cao

Definition 1. A symmetric relation R ⊆ Prc × Prc is a weak context bisimu-
lation if P R Q implies:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ̂=⇒ Q′ and P ′ R Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ R Q′,

where α is in the form of l or l;

(3) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉
=⇒ Q′ and P ′ R Q′;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′ and

for all C(U) with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉). Here
C(U) is a process containing a unique variable U .

We write P ≈Ct Q if P and Q are weakly context bisimilar.

Definition 2. A symmetric relation R ⊆ Prc × Prc is a weak normal bisimu-
lation if P R Q implies:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ̂=⇒ Q′ and P ′ R Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ R Q′,

where α is in the form of l or l;

(3) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉
=⇒ Q′ and P ′ R Q′,

where m is a fresh name;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′ and

(νb̃)(P ′|!m.E) R (νc̃)(Q′|!m.F), where m is a fresh name.
We write P ≈Nr Q if P and Q are weakly normal bisimilar.

In [15,16], Thomsen presented a higher order bisimulation.

Definition 3. A symmetric relation R ⊆ Prc × Prc is a weak higher order
bisimulation if P R Q implies:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ̂=⇒ Q′ and P ′ R Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ R Q′,

where α is in the form of l or l;

(3) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉
=⇒ Q′ and P ′ R Q′;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F such that Q

(νb̃)a〈F 〉
=⇒ Q′, E R

F and P ′ R Q′.
We write P ≈HO Q if P and Q are weakly higher order bisimilar.

3 A Linear Higher Order π-Calculus and Its
Bisimulations

In this section, we first give a finite higher order π-calculus. Then to get an
bisimulation checking algorithms for this calculus , we present a new bisimula-
tion, called linear normal bisimulation, and study the relation between context
bisimulation and this bisimulation.

Equivalence Checking for a Finite Higher Order π-Calculus 35

3.1 Syntax of Linear Higher Order π-Calculus

Firstly, we have to isolate a finite sub calculus in higher order π-calculus. In CCS
and π-calculus, sub calculus with inaction, prefix, sum, parallel and restriction
operators are finite, but for higher order π-calculus, things are different.

For example, let us see the language of higher order π-calculus with sum,
parallel and restriction operators defined by the following grammar:

P ::= 0 | U | π1.P1 + ... + πn.Pn | P1|P2 | (νa)P
πi ::= τ | l | l | a(U) | a〈P 〉
We write the set of processes of this higher order π-calculus as PrA. The set

of all closed processes in PrA is denoted as Prc
A.

But PrA is not finite since the processes in PrA may transform to infinite
states. Let us see an example: if W = a(X).(X |X |ā〈X〉.0), Ω = (νa)(W |ā〈W 〉.0),
then Ω

τ−→ (νa)(W |W |ā〈W 〉.0) τ−→ (νa)(W |W |W |ā〈W 〉.0) τ−→ ... is a possible
reduction. In fact, the expressive power of PrA is equal to Pr. In [11], Parrow has
shown that in higher order π-calculus, the replication can be defined by other
operators such as higher order prefix, parallel and restriction. For example, !P
can be simulated by RP = (νa)(D|a〈P |D〉.0), here D = a(X).(X |a〈X〉.0). Hence
the behavior of any process of higher order π-calculus can be simulated by PrA.

Therefore, to get a finite higher order π-calculus, we have to restrict the
language of PrA. Roughly speaking, we will isolate a class of processes in which
a variable may occur at most once. In [13,14], the class of such processes was
called linear calculus.

Definition 4. The language of linear higher order π-calculus defined by the fol-
lowing grammar:

P ::= 0
| U
| π1.P1 + ... + πn.Pn where fv(πi) ∩ fv(Pi) = ∅. Here πi is in the form
of τ , l, l, a(U) or a〈P 〉, and fv(π) represents the set of variables
occurring free in π, which is fv(P) if π is a〈P 〉 and ∅ otherwise.
| P1|P2 where fv(P1) ∩ fv(P2) = ∅
| (νa)P

We write the set of processes of linear higher order π-calculus as PrL. The
set of all closed processes in PrL is denoted as Prc

L.

For example, a(X).(b.X + c〈m.X〉.0), (νa)(a〈m.0〉|a(X).(m.0|X)) and a(X).
b〈c.X〉.0 + b(U).(m.U + c.U) are processes in PrL. In addition, since processes
in CCS contains no variable, all finite processes in CCS are also in PrL.

The labelled transition system of linear higher order processes is defined on
Prc

L, i.e., all processes appearing in the labelled transition system are closed.
The labelled transition system of Prc

L is similar to Table 1, except that there is
no Rule REP.

3.2 Linear Normal Bisimulation

There are several checking algorithms for bisimulation-based equivalence over
various process calculi, such as CCS and π-calculus. To generalize them to

36 Z. Cao

higher order π-calculus a key issue is how to deal with higher order input and
output prefixing, because this is exactly where process variables are introduced.
A possible solution is to adopt the following algorithm:

INPUT : If P{E/U} = Q{E/U} for each process E, then a(U).P = a(U).Q.

OUTPUT : If (νb̃)(P |C{E/U}) = (νc̃)(Q|C{F/U}) for each process C(U),
then (νb̃)(a〈E〉.P) = (νc̃)(a〈F 〉.Q).

However the problem here is that to apply the above rules we have to inspect
an infinite number of premises since there are infinitely many processes, and
therefore these rules are of little use.

To obtain an efficient algorithm we need to replace the statements INPUT
and OUTPUT with finitary ones. As the infinity in the rules is caused by the
appearance of universal quantifications in the definition of ≈Ct, to avoid such
universal quantifications, we need a new definition of bisimulation. One may
think that normal bisimulation is such a definition since it was proved to be
equivalent to weak context bisimulation and there is no universal quantifica-
tions in the definition of ≈Nr. Unfortunately, normal bisimulation is not such a
candidate. If we adopt the definition of ≈Nr, the algorithm will be as follows:

INPUT : If P{m.0/U} = Q{m.0/U} with a new name m, then a(U).P =
a(U).Q.

OUTPUT : If (νb̃)(P |!m.E) = (νc̃)(Q|!m.F) with a new name m, then
(νb̃)(a〈E〉.P) = (νc̃)(a〈F 〉.Q).

Now the statement INPUT is efficient, but replication operators appear in
the rule OUTPUT which is not an operator in finite process. Hence normal
bisimulation cannot be used directly to give the algorithm for higher order input
or output prefixing.

Finally, if we adopt the definition of ≈HO, the algorithm will be as follows:

INPUT : If P{E/U} = Q{E/U} for each process E, then a(U).P = a(U).Q.

OUTPUT : If E = F and P = Q, then (νb̃)(a〈E〉.P) = (νb̃)(a〈F 〉.Q).

It is easy to see that higher order bisimulation is also not a definition that we
need because universal quantifications appear in the rule of higher order input pre-
fixing and furthermore ≈HO is not equivalent to ≈Ct for Pr as showed in [13,14].

To give a bisimulation checking algorithm for Prc
L, we need to study other

bisimulation simpler than context bisimulation. Normal bisimulation is simpler
than context bisimulation, but the definition of normal bisimulation contains
the replication operator. Therefore we should present a new bisimulation. In
the following, we simplify the definition of normal bisimulation and get a new
bisimulation, called linear normal bisimulation.

Definition 5. A symmetric relation R ⊆ Prc
L × Prc

L is a weak linear normal
bisimulation if P R Q implies:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ̂=⇒ Q′ and P ′ R Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ R Q′,

where α is in the form of l or l;

Equivalence Checking for a Finite Higher Order π-Calculus 37

(3) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉
=⇒ Q′ and P ′ R Q′,

where m is a fresh name;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F, c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′, and

(νb̃)(P ′|m.E) R (νc̃)(Q′|m.F), where m is a fresh name.

We write P ≈Ln Q if P and Q are weakly linear normal bisimilar.

Weak linear normal bisimulation is a simplification of weak normal bisimulation
by eliminating replication operators in the clause (4) of Definition 2. In [13],
Sangiorgi showed that if we eliminate replication operators in the definition of
≈Nr, the resulting bisimulation, i.e., weak linear normal bisimulation ≈Ln, is
not equivalent to ≈Ct for the general processes in Prc. A counterexample in [13]
is: P ≡ (νb)a〈b.b.c|b〉.0 and Q ≡ a〈0〉.0.

It is obvious that in this definition, the universal quantification and the repli-
cation operator are all disappeared. Hence we can give a bisimulation checking
algorithm for weak linear normal congruence over Prc

L. Furthermore, if we can
prove the coincidence between weak context bisimulation and this bisimulation
for Prc

L, then this algorithm also works for weak context bisimulation over Prc
L.

Similarly, for processes in Prc
L, the definition of weak context bisimulation is

the same as Definition 1, except that the clause (4) is replaced with the following
clause:

(4’) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F, c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′ and

for all C(U) ∈ PrL with fn(C(U))∩{b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉).
Here C(U) is a process containing a unique variable U .

3.3 Finiteness of Prc
L

In this section, we show the finiteness of Prc
L, i.e., the transition sequence of a

process in Prc
L is finite.

Lemma 1. For any P ∈ Prc
L, if P

α−→ P ′, then P ′ ∈ Prc
L.

Proof. Induction on the structure of P.

The depth of processes, which is the maximal number of nested prefix operators,
is defined as below:

Definition 6. The depth of higher order processes in Prc
L, is defined as below:

1. d(0)
def
= 0;

2. d(U)
def
= 2;

3. d(τ.P)
def
= 1 + d(P);

4. d(l.P)
def
= 1 + d(P);

5. d(l.P)
def
= 1 + d(P);

6. d(a(U).P)
def
= 1 + d(P);

38 Z. Cao

7. d(a〈E〉.P)
def
= 3 + d(E) + d(P);

8. d(P1 + P2)
def
= max(d(P1), d(P2));

9. d(P1|P2)
def
= d(P1) + d(P2);

10. d((νa)P)
def
= d(P).

Remark 1. We set d(U) = 2 because we need d(U) > d(m.0), which is used in
the proof of Lemma 3. We set d(a〈E〉.P) = 3 + d(E) + d(P) because we need
d(a〈E〉.P) > d(τ.(P |m.E)) = 2 + d(E) + d(P), which is used in the proofs of
Proposition 1 and Proposition 7.

Lemma 2. For any P ∈ PrL, then d(P{m.0/U}) + d(E) > d(P{E/U}).

It is easy to see that after performing a first order action, a process always
transforms to a simpler process. For example, in the case of finite CCS and
finite π-calculus, if P

α−→ P ′, then d(P) > d(P ′). This property is useful in
proof of completeness of inference system. But for higher order input action,
it may make process transform to a more complicated process since it may

introduce any complicated process. For instance, a(U).U
a〈b.b.0〉−→ b.b.0 b−→ b−→ 0,

a(U).U
a〈b.b.b.0〉−→ b.b.b.0 b−→ b−→ b−→ 0. Therefore to ensure the finiteness of Prc

L,
we have to restrict the process introduced by higher order input action. In the
following, we present the concept of normal transition.

Definition 7. Normal transition
The transition P

α−→ P ′ is called a normal transition if α is of the form τ, l, l,
(νb̃)a〈E〉, or a〈m.0〉, where m is a fresh name.

Lemma 3. For a normal transition P
α−→ P ′, if α is not a higher order output

action, then d(P) > d(P ′); if α is of the form (νb̃)a〈E〉 then d(P) > d(P ′) +
d(E) + 2.

The following Proposition states the finiteness of Prc
L w.r.t. normal transition.

Proposition 1. For any P ∈ Prc
L, any normal transition sequence of P is finite,

i.e., there is no infinite normal transition sequence P
α1−→ α2−→

Proof. By Lemma 3, if P
α−→ P ′ is a normal transition, then d(P) > d(P ′).

Hence any normal transition sequence of P is finite.

3.4 The Equivalence between Weak Context Bisimulation and
Weak Linear Normal Bisimulation for Prc

L

In this paper, we aim to present a checking algorithm for weak context congru-
ence over Prc

L. To achieve this end, we first prove the equivalence between weak
linear normal bisimulation and weak context bisimulation for Prc

L.

Equivalence Checking for a Finite Higher Order π-Calculus 39

Lemma 4. For all P, Q ∈ Prc
L, P ≈Ln Q implies

(1) α.P + R ≈Ln α.Q + R
(2) P |R ≈Ln Q|R.
(3) (νa)P ≈Ln (νa)Q.
(4) a〈P 〉.R + S ≈Ln a〈Q〉.R + S

Proof. Similar to the proof of Theorem 4.4.1 in [13].

Lemma 5. For all P , Q ∈ Prc
L, P ≈Ct Q implies

(1) α.P + R ≈Ct α.Q + R
(2) P |R ≈Ct Q|R.
(3) (νa)P ≈Ct (νa)Q.
(4) !P ≈Ct!Q.
(5) a〈P 〉.R + S ≈Ct a〈Q〉.R + S

Proof. See the proof of Theorem 4.4.1 in [13].

To give a bisimulation checking algorithm, we will study the relation between
≈Ln and ≈Ct . The following lemma is used in the proof of the equivalence
between ≈Ln and ≈Ct.

Lemma 6. For any P , Q ∈ Prc
L, P ≈Ct Q ⇒ P ≈Ln Q.

The following lemma is a simplified version of factorisation theorem of higher
order π-calculus for Prc

L.

Lemma 7. For any P , E ∈ Prc
L with m /∈ fn(P, E), it holds that P{E/U} ≈Ct

(νm)(P{m.0/U}|m.E).

Proof. The proof is similar to the proof of the factorisation theorem [13,14] with
the condition P , E ∈ Prc

L.

For example, if P
def
= b.Q + c〈a.Q〉.0, then P = (b.X + c〈a.X〉.0){Q/X} and,

applying the above lemma (and assuming m fresh), P ≈Ct (νm)((b.m.0 +
c〈a.m.0〉.0)|m.Q).

The following Proposition gives the coincidence between ≈Ct and ≈Ln for our
linear higher order π-calculus.

Lemma 8. For any P , Q ∈ Prc
L, P ≈Ln Q ⇒ P ≈Ct Q.

Proposition 2. For any P , Q ∈ Prc
L, P ≈Ln Q ⇔ P ≈Ct Q.

Proof. It is immediate by Lemma 6 and Lemma 8.

4 A Bisimulation Checking Algorithm WBC for Prc
L

Now we want to describe an algorithm which given two processes P , Q ∈ Prc
L,

calculates whether P ≈Ct Q or not. As we discussed before, since universal
quantifications appear in the definition of weak context bisimulation, it is difficult
to give an efficient checking algorithm directly. On the other hand, we have
proved the equivalence between ≈Ct and ≈Ln, therefore to check ≈Ct over Prc

L,
it is enough to check ≈Ln over Prc

L.

40 Z. Cao

4.1 Normal Transition Graph

In this section, a formal language, normal transition graph (NTG), will be intro-
duced. Traditionally processes are modelled by labelled transition systems (LTS)
which are directed graphs in which arcs are labelled by higher order actions. A
vertex in an LTS represents a state and the outgoing arcs show the possible ac-
tions the process at the state can perform to evolve into the target states. NTGs
are graphical representation for higher order processes, where input/output ac-
tions and process expressions are retained in the edges.

The formal definition of NTG is as follows:

Definition 8. A normal transition graph (NTG) is a tuple (S, s0, A, E) where
(1) S is a finite set of nodes, which represent higher order processes in Prc

L.
(2) s0 is the initial node.
(3) A = {τ, l, l, a?, a! | l, a ∈channel set N} is a set of actions. Here τ, l, l are

first order actions, a? represents higher order input action through channel a. a!
represents higher order output action through channel a.

(4) E ⊆ S × A × S is a finite set of edges. Where (s, α, t) ∈ E if s
α−→ t and

α is not a higher order action, (s, a?, t) ∈ E if s
a〈m.0〉−→ t and m is a fresh name,

(s, a!, t) ∈ E if s
(νb̃)a〈r〉−→ p, t = (νb̃)(p|m.r) and m is a fresh name.

An example NTG is shown in Fig. 1.

Fig. 1. A normal transition graph

In this figure, s0 = (νb)a〈b.0〉.(c(U).U + b.0) is the initial node of the system.
On the edge from s0 to s1, action a! output process b.0. At s1, the system can
choose to change to s2 by performing higher order input c? or change to s3 by

Equivalence Checking for a Finite Higher Order π-Calculus 41

performing first order action m. Similarly, action m makes s2 transform to node
s5, action τ makes s3 become s6 and action n makes s5 become s6.

Proposition 3. For any P ∈ Prc
L, the normal transition graph of P is finite.

Proof. It is easy by induction on the structure of P and using Lemma 3: for any
α, if P

α−→ P ′ is a normal transition, then d(P) > d(P ′) if α is not a higher
order output action, or d(P) > d(P ′) + d(E) + 1 if α is of the form (νb̃)a〈E〉.

4.2 The Algorithm WBC

In this section we presented an algorithm WBC for checking linear normal bisim-
ulation over Prc

L as follows:
bisim(P, Q) =

if P = 0 and Q = 0 then return(true)
else b := ∧

α∈NA(P,Q)
matchα(P, Q)

return(b)
matchα∈{τ,l,l}(P, Q) =

if P
α−→ and Q

α̂

�=⇒ then return(false)

if Q
α−→ and P

α̂

�=⇒ then return(false)

for each P
α−→ Pi, Q

α̂=⇒ Qj

ci,j := bisim(Pi, Qj)

for each Q
α−→ Qi, P

α̂=⇒ Pj

di,j := bisim(Qi, Pj)
return((∧

i
(∨

j
ci,j)) ∧ (∧

i
(∨

j
di,j))).

matcha?(P, Q) =
m := nextSN(P, Q)

if P
a〈m.0〉−→ and Q

a〈m.0〉
�=⇒ then return(false)

if Q
a〈m.0〉−→ and P

a〈m.0〉
�=⇒ then return(false)

for each P
a〈m.0〉−→ Pi, Q

a〈m.0〉
=⇒ Qj

ci,j := bisim(Pi, Qj)

for each Q
a〈m.0〉−→ Qi, P

a〈m.0〉
=⇒ Pj

di,j := bisim(Qi, Pj)
return((∧

i
(∨

j
ci,j)) ∧ (∧

i
(∨

j
di,j))).

matcha!(P, Q) =
m := nextSN(P, Q)

if P
(νb̃)a〈Ei〉−→ and Q

(νc̃)a〈Fj〉
�=⇒ then return(false)

if Q
(νc̃)a〈Fi〉−→ and P

(νb̃)a〈Ej〉
�=⇒ then return(false)

42 Z. Cao

for each P
(νb̃)a〈Ei〉−→ Pi, Q

(νc̃)a〈Fj〉=⇒ Qj

ci,j := bisim((νb̃)(Pi|m.Ei), (νc̃)(Qj |m.Fj))

for each Q
(νc̃)a〈Fi〉−→ Qi, P

(νb̃)a〈Ej〉=⇒ Pj

di,j := bisim((νc̃)(Qi|m.Fi), (νb̃)(Pj |m.Ej))
return((∧

i
(∨

j
ci,j)) ∧ (∧

i
(∨

j
di,j))).

The algorithm is adapted from the algorithm for value-passing processes [1].

NA(P) = {τ | ∃P ′ P
τ−→ P ′} ∪ {l | ∃P ′ P

l−→ P ′} ∪ {l | ∃P ′ P
l−→ P ′} ∪ {a? |

∃P ′, m P
a〈m.0〉−→ P ′}∪{a! | ∃P ′, E P

(νb̃)a〈E〉−→ P ′}. NA(P)∪NA(Q) is abbreviated
as NA(P, Q). It assumes a countably infinite subset SN ⊆ N which is totally
ordered. The function nextSN(P, Q) returns the smallest name in SN that does
not appear in the set of free names at states P and Q. We use P

α−→ to represent

there exists P ′ such that P
α−→ P ′, and Q

α

�=⇒ means there is no Q′ such that
Q

α=⇒ Q′.
The function bisim(P, Q) starts with the initial pair (P, Q), trying to check

the bisimilarity of P and Q by matching transitions from them. While travelling
the normal transition graph, at each pair of nodes the algorithm produces the
outgoing transitions and next states according to the operational semantics of
linear processes. The transitions are then matched for bisimulation, and the
algorithm goes on to the new state pairs if the matches are successful.

The function matchα, performs a depth-first search on the product of the two
normal transition graphs. If two states fail to match each other’s transitions then
they are not bisimilar and return false, otherwise return true.

4.3 The Correctness of WBC

The correctness of the algorithm for weak linear normal bisimulation is not
difficult to justify. Each call of matchα(P, Q) performs a depth-first search in
the product graph of the two normal transition graphs. matchα(P, Q) is recalled
in the case of d(P)+ d(Q) has been decreased by at least one. This ensures that
matchα(P, Q) can only be called for finitely many times. Therefore bisim(P, Q)
will always terminate. Furthermore we get the following proposition:

Proposition 4. For any P , Q ∈ Prc
L, bisim(P, Q) always terminates and

P ≈Ln Q ⇔ P ≈Ct Q ⇔ bisim(P, Q) returns true.

Proof. By the above discussion and the definition of ≈Ln, it is easy to see the cor-
rectness of WBC for ≈Ln. Since by Proposition 2, ≈Ln and ≈Ct are coincident,
the proposition holds.

5 A Complete Inference System for Linear Higher Order
π-Calculus

This section aims to provide a complete inference system, named WCE, for
context bisimulation equivalence in the higher order π-calculus.

Equivalence Checking for a Finite Higher Order π-Calculus 43

5.1 Context Congruence and Linear Normal Congruence

We know that ≈Ct is not fully substitutive: P ≈Ct Q does not imply P +R ≈Ct

Q+R. (For example, b.0 ≈Ct τ.b.0 while a.0+ b.0 �≈Ct a.0+ τ.b.0). So we cannot
present a complete inference system for ≈Ct . Hence similar to the case of CCS
and π-calculus, we have to work with the modified relations: context congruence
and linear normal congruence:

Definition 9. We write P ∼=Ct Q, saying P and Q are weakly context congru-
ent, if:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ=⇒ Q′ and P ′ ≈Ct Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ ≈Ct Q′,

where α is in the form of l or l;

(3) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉
=⇒ Q′ and P ′ ≈Ct Q′;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′ and for

all C(U) ∈ PrL with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) ≈Ct (νc̃)(Q′|C〈F 〉).
Here C(U) is a process containing a unique variable U .

Definition 10. We write P ∼=Ln Q, saying P and Q are weakly linear normal
congruent, if:

(1) whenever P
τ−→ P ′, there exists Q′ such that Q

τ=⇒ Q′ and P ′ ≈Ln Q′;
(2) whenever P

α−→ P ′, there exists Q′ such that Q
α=⇒ Q′, and P ′ ≈Ln Q′,

where α is in the form of l or l;

(3) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉
=⇒ Q′ and P ′ ≈Ln Q′,

here m is a fresh name;

(4) whenever P
(νb̃)a〈E〉−→ P ′, there exist Q′, F, c̃ such that Q

(νc̃)a〈F 〉
=⇒ Q′,

(νb̃)(P ′|m.E) ≈Ln (νc̃)(Q′|m.F), here m is a fresh name.

5.2 The Equivalence between Weak Context Congruence and Weak
Linear Normal Congruence for Prc

L

This section gives the equivalence between weak context congruence and weak
linear normal congruence, which is used in the proof of soundness and complete-
ness of the inference system.

Firstly, we show that ∼=Ct is a congruence relation, i.e., preserved by all op-
erators.

Lemma 9. For all P , Q ∈ Prc
L, P ∼=Ct Q implies

(1) α.P ∼=Ct α.Q
(2) P + R ∼=Ct Q + R.
(3) P |R ∼=Ct Q|R.
(4) (νa)P ∼=Ct (νa)Q.
(5) !P ∼=Ct!Q.
(6) a〈P 〉.R ∼=Ct a〈Q〉.R

Proof. Similar to Lemma 5.

44 Z. Cao

The following lemma is a higher order π-calculus version of Hennessy’s Theorem.

Lemma 10. For all P , Q ∈ Prc
L, P ≈Ct Q iff (P ∼=Ct Q or P ∼=Ct τ.Q or

τ.P ∼=Ct Q)

Now we can give the equivalence between ∼=Ln and ∼=Ct .

Proposition 5. For all P , Q ∈ Prc
L, P ∼=Ln Q iff P ∼=Ct Q.

Proof. Similar to Proposition 2.

5.3 Inference System WCE for Prc
L

The following rules give an inference system of weak context congruence for Prc
L.

We write this inference system as WCE.

1. P = P
2. P = Q ⇒ Q = P
3. P = Q and Q = R ⇒ P = R
4. P = Q ⇒ l.P = l.Q
5. P = Q ⇒ l.P = l.Q
6. P = Q ⇒ τ.P = τ.Q
7. P = Q ⇒ P + R = Q + R
8. P = Q ⇒ P |R = Q|R
9. P = Q ⇒ (νa)P = (νa)Q

10. P + 0 = P
11. P + P = P
12. P + Q = Q + P
13. P + (Q + R) = (P + Q) + R
14. P |0 = P

15. P |Q =
∑

i∈I(νb̃i)(αi.(Pi|Q)) +
∑

j∈J (νc̃j)(βj .(P |Qj)) +
∑

αi opp βj
τ .Ri,j ,

where P =
∑

i∈I(νb̃i)(αi.Pi) and Q =
∑

j∈J (νc̃j)(βj .Qj),
αi opp βj and Ri,j are defined as follows:
(a) αi ≡ a, βj ≡ a; then Ri,j ≡ (νb̃i)Pi|(νc̃j)Qj , where a /∈ b̃i ∪ c̃j ;
(b) αi ≡ a, βj ≡ a; then Ri,j ≡ (νb̃i)Pi|(νc̃j)Qj , where a /∈ b̃i ∪ c̃j ;
(c) αi ≡ a(U), βj ≡ a〈E〉; then Ri,j ≡ (νc̃j)((νb̃i)Pi{E/U}|Qj), where a /∈

b̃i ∪ c̃j ;
(d) αi ≡ a〈E〉, βj ≡ a(U); then Ri,j ≡ (νb̃i)(Pi|(νc̃j)Qj{E/U}), where a /∈

b̃i ∪ c̃j .
16. α.τ.P = α.P
17. P + τ.P = τ .P
18. (νã)(α.(P + τ.Q)) + (νã)(α.Q) = (νã)(α.(P + τ.Q))
19. (νa)0 = 0
20. (νa)(νb)P = (νb)(νa)P
21. (νa)(P + Q) = (νa)P + (νa)Q
22. (νa)(α.P) = α.(νa)P if a /∈ n(α)

Equivalence Checking for a Finite Higher Order π-Calculus 45

23. (νa)(α.P) = 0 if a is the port of α
24. P{m.0/U} = Q{m.0/U} with a new name m ⇒ a(U).P = a(U).Q
25. τ.(νb̃)(P |m.E) = τ.(νc̃)(Q|m.F) with a new name m ⇒ (νb̃)(a〈E〉.P) =

(νc̃)(a〈F 〉.Q)

This inference system includes two parts: One part consists of Rules 1-23,
which is similar to the algebra theory of CCS. The other part consists of Rules 24
and 25, which mainly describes the algebra laws of higher order input and output
actions. Rule 24 is the algebra description of higher order input action where
universal quantification is eliminated. Rule 25 is the algebra description of higher
order output action where universal quantification and replication operator do
not appear. The soundness and completeness of the inference system can be
derived from the coincidence between weak context congruence and weak linear
normal congruence.

5.4 The Soundness and Completeness of the Inference System
WCE

In this section, we will prove the soundness and completeness of WCE. Firstly
we prove the soundness of WCE, whose proof relies on the equivalence between
∼=Ln and ∼=Ct for Prc

L. We write WCE � P = Q if there is a proof of P = Q in
the inference system WCE.

Proposition 6. For any P, Q ∈ Prc
L, WCE � P = Q implies P ∼=Ct Q.

Now we are ready to prove the completeness of WCE. The proof strategy is
similar to the case of CCS. Firstly, we prove that for every process there is an
equivalent normal form process (called full standard form process) which can be
rewritten by WCE. Then by induction over the depth of processes, we prove that
for any full standard form processes P and Q, P ∼=Ct Q implies WCE � P = Q.
After that, the completeness of WCE is obvious.

Definition 11. A process P is in standard form if P ≡
∑m

i=1(νb̃)(αi.Pi), where
Pi is also in standard form, b̃ = ∅ if αi is not a higher order output action, and
Ei is also in standard form if αi = a〈Ei〉.

Lemma 11. For any process P there is a standard form process Q of not greater
depth such that WCE � P = Q.

Definition 12. P is a full standard form if
(1) P ≡

∑m
i=1(νb̃)αi.Pi, where each Pi is in full standard form, and Ei is also

in full standard form if αi = a〈Ei〉;
(2) whenever P

(νb̃)α
=⇒ P ′ then P

(νb̃)α−→ P ′.

Lemma 12. If P
(νb̃)α
=⇒ P ′ then WCE � P = P + (νb̃)(α.P ′).

Lemma 13. For any standard form P there is a full standard form P ′ of equal
depth, such that WCE � P = P ′.

46 Z. Cao

Proposition 7. For any P, Q ∈ Prc
L, P ∼=Ct Q implies WCE � P = Q.

By Propositions 6 and 7, the soundness and completeness of WCE is stated as
follows:

Proposition 8. The inference system WCE is sound and complete for ∼=Ct

over Prc
L.

For Prc
L, we can similarly define weak normal congruence ∼=Nr, and prove that

it coincides with ∼=Ct and ∼=Ln. Since WCE is a sound and complete inference
system for ∼=Ct, it is also sound and complete for ∼=Nr.

6 Conclusions

In this paper, we present an algorithm for checking weak context bisimulation
over a linear higher order π-calculus. To achieve this aim, we present a new
bisimulation, called linear normal bisimulation, and prove that it coincides with
context bisimulation for our linear higher order π-calculus. Furthermore, we give
an inference system for this linear higher order π-calculus.

One may have a question whether we can give a checking algorithm or an
inference system for Prc

A. Unfortunately, the answer is negative. Parrow [11]
has shown that the behavior of regular higher order π-calculus can be simulated
by Prc

A under the sense of weak bisimulation. If there is a checking algorithm
for Prc

A, then the bisimilarity of Prc
A is semi-decidable. Hence the bisimilarity

of regular higher order π-calculus is also semi-decidable. But it is impossible
since the expressive power of higher order π-calculus is very powerful. In CCS
and π-calculus, there were some checking algorithms and some inference systems
for the finite-control subclass which does not allow the | operator to occur in
a recursively defined process [8,9]. But seeking checking algorithm or inference
system for the finite-control higher order π-calculus seems a challenging problem.

References

1. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138,
353–389 (1995)

2. Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal
Aspects of Computing 8, 379–407 (1996)

3. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order π-calculus revisited.
In: Proceedings of Mathematical Foundations of Programming Semantics, Elsevier,
Amsterdam (2003)

4. Jonsson, B., Parrow, J.: Deciding bisimulation equivalences for a class of non-finite-
state program. Information and Computation 107, 272–302 (1993)

5. Larsen, K.G.: Efficient local correctness checking (extended abstract). In: Probst,
D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 30–43. Springer,
Heidelberg (1993)

6. Li, Z., Chen, H.: Checking strong/weak bisimulation equivalences and observation
congruence for the π-calculus. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.)
ICALP 1998. LNCS, vol. 1443, pp. 707–718. Springer, Heidelberg (1998)

Equivalence Checking for a Finite Higher Order π-Calculus 47

7. Lin, H.: Complete proof systems for observation congruence in finite-control π-
calculus. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 443–454. Springer, Heidelberg (1998)

8. Lin, H.: Computing bisimulations for finite-control π -calculus. Journal of Com-
puter Science and Technology 15(1), 1–9 (2000)

9. Lin, H.: Complete inference systems for weak bisimulation equivalences in the π-
calculus. Information and Computation 180(1), 1–29 (2003)

10. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

11. Parrow, J.: An introduction to the π-calculus. In: Bergstra, J., Ponse, A., Smolka,
S. (eds.) Handbook of Process Algebra, North-Holland, Amsterdam (2001)

12. Parrow, J., Sangiorgi, D.: Algebraic theories for name-passing calculi. Information
and Computation 120(2), 174–197 (1995)

13. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D thesis, Department of Computer Science, University of Einburgh
(1992)

14. Sangiorgi, D.: Bisimulation in higher-order calculi. Information and Computa-
tion 131(2) (1996)

15. Thomsen, B.: Calculus for higher order communicating systems. Ph.D thesis, De-
partment of Computer, Imperial College (1990)

16. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order pro-
cesses. Acta Informatica 30, 1–59 (1993)

Finding Counter Examples in Induction Proofs

Koen Claessen and Hans Svensson

Chalmers University of Technology, Gothenburg, Sweden
{koen,hanssv}@chalmers.se

Abstract. This paper addresses a problem arising in automated proof
of invariants of transition systems, for example transition systems mod-
elling distributed programs. Most of the time, the actual properties we
want to prove are too weak to hold inductively, and auxiliary invariants
need to be introduced. The problem is how to find these extra invari-
ants. We propose a method where we find minimal counter examples to
candidate invariants by means of automated random testing techniques.
These counter examples can be inspected by a human user, and used to
adapt the set of invariants at hand. We are able to find two different
kinds of counter examples, either indicating (1) that the used invariants
are too strong (a concrete trace of the system violates at least one of
the invariants), or (2) that the used invariants are too weak (a concrete
transition of the system does not maintain all invariants). We have de-
veloped and evaluated our method in the context of formally verifying an
industrial-strength implementation of a fault-tolerant distributed leader
election protocol.

1 Introduction

This paper gives a partial report on our experiences on using (semi-)automated
theorem proving to formally verify safety properties of an industrial-strength
implementation of a fault-tolerant leader election protocol in the programming
language Erlang [19].

Leader election is a basic technique in distributed systems; a fixed set of
processes has to determine a special process, the leader, among them. There is
one basic safety property of such algorithms (”there should never be more than
one leader”), and one basic liveness property (”eventually there should be one
leader”). In fault-tolerant leader election, processes can die and be restarted at
any point in time (during or after the election), making the problem immensely
tricky.

Erlang is a language for distributed programming originally developed for
implementing telecommunication systems at Ericson [3,2]. A key feature of the
systems for which Erlang was primarily designed is fault-tolerance; Erlang has
therefore built-in support for handling failing processes.

The implementation of the leader election algorithm we verified was developed
by us, after we had uncovered some subtle bugs in an earlier existing implemen-
tation using testing techniques [4]. Our new implementation is based on an adap-
tation of a standard fault-tolerant leader election algorithm by Stoller [18] and is

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 48–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finding Counter Examples in Induction Proofs 49

now a standard library in Erlang. In our implementation, we had to make some
changes to Stoller’s original algorithm because of the way processes communicate
in Erlang (via asynchronous message passing over unbounded channels) and the
way fault-tolerance is handled in Erlang (a process can monitor another process,
in which case it receives a special message when the other process dies).

From our previous experience, we knew that it is extremely hard to get these
kinds of algorithms right. Indeed, we started by extensively testing the new im-
plementation using our testing techniques [4], leading to our increased confidence
in the correctness of the implementation. However, we had some reasons to be
cautious. Firstly, our implementation was based on an adaptation of Stoller’s
original algorithm, so even if Stoller’s algorithm were correct, our adaptation of
it might not be. Secondly, Stoller never gives a formal proof of correctness in his
paper [18]. His algorithm is in turn an adaptation of a classical leader election
algorithm (called ”The Bully Algorithm”) by Garcia-Molina, which in turn only
has been proven correct in the paper in a very informal way [12]. Stoller claims
that his modifications are so minor that giving a new proof is not needed: “The
proofs that the BullyFD Algorithm satisfies SLE1 and SLE2 are very similar to
the proofs of Theorems A1 and A2 in [GM82] and are therefore omitted.”

When we decided to formally verify our implementation, we first tried a num-
ber of different model checking methods (among others SPIN [13] and our own
model checker McErlang [11]). Unfortunately, these could only be used for ex-
tremely small and unconvincing bounds on the number of processes, sizes of
message queues, and number of times processes can die. This is partially due
to the huge state space generated by the combination of asynchronous message
passing and fault-tolerance.

The alternative we eventually settled on was to prove invariants of the sys-
tem inductively by means of automated first-order logic theorem proving. Here,
we model the implementation as an abstract transition system, and express the
properties we want to prove as invariants on the states of the transition system.
The reasons we chose this approach were (1) using first-order logic allowed us to
prove the implementation correct for any number of processes, using unbounded
message queues and an unbounded number of occurring faults, and (2) auto-
mated first-order theorem provers are relatively autonomous, in principle only
requiring us to interact with the verification process at the level of choosing the
invariants.

The main obstacle in this approach is that, most often, the (relatively small)
set of invariants one is interested in establishing is not inductively provable. This
means that the original set of invariants has to be strengthened by changing
some of the invariants or by augmenting the set with new invariants, until the
set is strong enough to be inductive. Very often, this is a non-trivial and labour-
intensive task. In our case, we started with one invariant (”there should not be
more than one leader”) and we ended up with a set of 89 invariants. This is the
sense in which we call our method semi-automated; if the right set of invariants
is picked (manually), the proof is carried out automatically. Thus, the user of

50 K. Claessen and H. Svensson

the method does not have to carry out proofs, but only has to formulate proof
obligations.

The task of finding the right set of invariants is not only non-trivial, but
can also be highly frustrating. The reason is that it is very easy for a user, in
an attempt to make the set of invariants stronger, to add properties to the set
which are in fact not invariants. When certain invariants can not be proven, the
first-order theorem provers we use do not in general provide any reason as to
why this is the case, leaving the user in the dark about what needs to be done
in order to get the proof through.

We identified 4 different reasons for why a failed proof of a given invariant
occurs: (1) the invariant is invalid, i.e. there exists a path from the initial state to
a state where the invariant is falsified, (2) the invariant is valid, but too weak, i.e.
it indeed holds in all reachable states, but it is not maintained by the transition
relation, (3) the invariant is valid and is maintained by the transition relation,
but the current axiomatization of the background theories is too weak, and (4)
the invariant is valid and should be provable, but the theorem prover at hand
does not have enough resources to do so.

The remedies for being in each of these cases are very different: For (1), one
would have to weaken the invariant at hand; for (2) one would have to strengthen
it; for (3) one would have to come up with extra axioms or induction principles;
for (4) one would have to wait longer or break the problem up into smaller bits.

Having a concrete counter example to a proof attempt would show the dif-
ference between cases (1), (2) and (3). Thus, having a way of finding counter
examples would greatly increase the productivity of the proposed verification
method. Providing counter models to first-order formulas (or to formulas in
more complex logics) is however an undecidable problem.

We have developed two novel methods, based on random property-based test-
ing using the automated testing tool QuickCheck [9], that, by automatically
re-using the invariants as test generators and test oracles, can automatically
and effectively find counter examples of categories (1) and (2). Finding counter
examples of category (3) remains future work.

Establishing inductive invariants is a very common method for verifying soft-
ware (in particular in object-oriented programs, see for example [5,21]). We be-
lieve that the methods for finding counter examples in this paper can be adapted
to other situations than verifying distributed algorithms.

The contributions of this paper are:

– A classification of different categories of counter examples in the process of
establishing inductive invariants using a theorem prover

– Two methods for finding two of the most common categories of counter
examples based on random testing

– An evaluation of the methods in the context of the verification of an industrial-
strength implementation of a leader election protocol

The rest of the paper is organized as follows. The next section explains the
method of verification we use in more detail. Section 3 explains the testing

Finding Counter Examples in Induction Proofs 51

techniques we use. Section 4 reports on the results of our method in the verifi-
cation of the leader election implementation. Section 5 concludes.

2 Verification Method

In this section, we describe the basic verification method we use to prove in-
variants. The method is quite standard; an earlier description of the method
in the context of automated first-order logic reasoning tools can be found in
[8]. The system under verification and the invariants are described using three
components:

– A predicate Init describing the initial state,
– A predicate Inv describing the invariant,
– A predicate transformer [Sys] that abstractly describes one transition of the

system.

For the predicate transformers, we borrow notation also used in dynamic logic
[5] and the B-method [1,21]. For a program S and a post-condition Q, we write
[S]Q to be the weakest pre-condition for S that establishes Q as a post-condition.
This in turn means that we can write

P → [S] Q

which has the same meaning as the Hoare triple {P}S{Q}; in all states where
P holds, making the transition described by S leads to states where Q holds.

The language we use to describe Sys is very simple. The three most impor-
tant constructs are assignments, conditionals, and non-deterministic choice. The
definition of predicate transformers we use is completely standard, and we will
only briefly discuss the concepts here. For more details, the reader can con-
sult [21]. Here are the definitions for the predicate transformers for assignments,
conditionals, and non-deterministic choice, respectively.

[x := e] P = P{e/x}
[if Q then S else T] P = (Q → [S]P) ∧ (¬Q → [T]P)

[S | T] P = [S]P ∧ [T]P

Establishing Inv as an invariant amounts to proving the following two state-
ments:

Init → Inv

Inv → [Sys] Inv

In practice, Inv is really a conjunction of a number of smaller invariants:

Init → Inv1 ∧ Inv2 ∧ · · · ∧ Invn

Inv1 ∧ Inv2 ∧ · · · ∧ Invn → [Sys] (Inv1 ∧ Inv2 ∧ · · · ∧ Invn)

52 K. Claessen and H. Svensson

The above two proof obligations are split up into several sub-obligations; for the
initial states, we prove, for all i, several obligations of the form:

Init → Invi

For the transitions, we prove, for all i, several obligations of the form:
⎛

⎝
∧

j∈Pi

Invj

⎞

⎠ → [Sys] Invi

So, for each invariant conjunct Invi, we have a subset of the invariants Pi that
we use as a pre-condition for establishing Invi. Logically, we can use all invari-
ants Invj as pre-condition, but in practice the resulting proof obligations would
become too large to be manageable by the theorem provers we use. Also, from
a proof engineering point of view, it is good to “localize” dependencies, so that
when the set of invariants changes, we only have to redo the proofs for the obli-
gations that were involved in the invariants we changed. (Note that the set Pi

can actually include the invariant Invi itself.)
To simplify the problems as much possible, we also use an aggressive case

splitting strategy, in the same way as described in [8]. Thus each of the above
proof obligations is proved in many small steps.

In Fig. 1 we show an example of an invariant. The function host(p) returns
the host for a given process p, the predicate elem(m, q) is true if a message m
is present in a message queue q. In this example we have an incoming message
queue queue(h) for each host h. (This simplification from having a message
queue per process is possible since there is only one process alive per host.)

∀Pid,Pid2.(
(elem(m Halt(Pid),

queue(host(Pid2)))
→ (host(Pid2) > host(Pid))

)
)

The invariant states that Halt-messages are
only sent to processes with lower priority: If
there is a Halt-message from Pid in the queue
of host(Pid2), then host(Pid2) is larger than
host(Pid). (Hosts with low numbers have high
priority.)

Fig. 1. Example invariant

2.1 Failed Proof Attempts

This paper deals with the problem of what to do when a proof attempt of
one of the proof obligations fails. Let us look at what can be the reason for a
failed proof attempt when proving the proof obligations related to a particular
candidate invariant Invi. We can identify 4 different reasons:

(1) The candidate invariant Invi is not an invariant of the system; there exists
a reachable state of the system that falsifies Invi.

(2) The candidate invariant Invi actually is an invariant of the system, but
it is not an inductive invariant. This means that there exists an (unreachable)

Finding Counter Examples in Induction Proofs 53

state where all invariants in the pre-condition set Pi of Invi are true, but after
a transition, Invi is not true. This means that the proof obligation for the
transition for Invi cannot be proven.

(3) The candidate invariant Invi actually is an invariant of the system, and it
is an inductive invariant. However, our background theory is not strong enough
to establish this fact. The background theory contains axioms about message
queues, in what order messages arrive, what happens when processes die, etc.
If these are not strong enough, the proof obligation for the transition for Invi

cannot be proven.
(4) The proof obligations are provable, but the theorem prover we use does

not have enough resources, and thus a correctness proof cannot be established.
When a proof attempt for a proof obligation fails, it is vital to be able to dis-

tinguish between these 4 cases. The remedies in each of these cases are different:
For (1), we have to weaken the invariant Invi, or perhaps remove it from the

set of invariants altogether.
For (2), we have to strengthen the set of pre-conditions Pi. We can do this by

strengthening some invariants in Pi (including Invi itself), or by adding a new
invariant to the set of invariants and to Pi.

For (3), we have to strengthen the background theory by adding more axioms.
For (4), we have to simplify the problem by for example using explicit case-

splitting, or perhaps to give the theorem prover more time.

2.2 Identifying the Categories

How can we identify which of the cases (1)-(4) we are in? A first-order logic
theorem prover does not give any feedback in general when it does not find
a proof. Some theorem provers, including the ones we used (Vampire [20], E-
prover [16], SPASS [10], and Equinox [7]) do provide feedback in certain cases,
for example in the form of a finite-domain counter model or a saturation, but
this hardly ever happens in practice.

One observation that we can make is that for cases (1)-(3), there exist counter
examples of different kinds to the proof obligations.

For (1), the counter example is a concrete trace from the initial state to the
reachable state that falsifies the invariant Invi.

For (2), the counter example is a concrete state that makes the pre-conditions
Pi true, but after one transition the invariant Invi does not hold anymore.

For (3), the counter example is a concrete counter model that makes the back-
ground theory true but falsifies the proof obligation. This counter model must
be a non-standard model of the background theory, since the proof obligation
is true for every standard model (which is implied by the fact that no concrete
counter example of kind (2) exists).

We would like to argue that, if the user were given feedback consisting of (a)
the category of counter example above, and (b) the concrete counter example,
it would greatly improve productivity in invariant-based verification.

In the next section, we show how we can use techniques from random testing to
find counter examples of type (1) and (2) above. We have not solved the problem

54 K. Claessen and H. Svensson

of how to find counter examples of type (3), which remains future work. (This is
an unsolvable problem in general because of the semi-decidability of first-order
logic.) Luckily, cases (1) and (2) are most common in practice, because, in our
experience, the background theory stabilizes quite quickly after the start of such
a project.

We would like to point out a general note on the kind of counter examples
we are looking for. Counter examples of type (1) are counter examples in a
logic in which we can define transitive closure of the transition relation. This is
necessarily a logic that goes beyond first-order logic. This logic for us exists only
on the meta-level, since we are merely performing the induction base case and
step case with theorem provers that can not reason about induction. Counter
examples of type (2) are only counter examples of the induction step (and do not
necessarily imply the existence of counter examples of the first kind). In some
sense, these can be seen as non-standard counter examples of the logic used
in type (1) counter examples. Counter examples of type (3) are also counter
examples of the induction step, but they do not follow the intended behavior
of our function and predicate symbols, and are therefore non-standard counter
examples of the induction step.

3 Finding Counter Examples by Random Testing

This section describes the random testing techniques that we used to find con-
crete counter examples to the proof obligations.

3.1 QuickCheck

QuickCheck [9] is a tool for performing specification-based random testing, orig-
inally developed for the programming language Haskell. QuickCheck defines a
simple executable specification logic, in which universal quantification over a set
is implemented as performing random tests using a particular distribution. The
distribution is specified by means of providing a test data generator. QuickCheck
comes equipped with random generators for basic types (Integers, Booleans,
Pairs, Lists, etc) and combinator functions, from which it is fairly easy to build
generators for more complex data structures.

When QuickCheck finds a failing test case (a test case that falsifies a property),
it tries to shrink this test case by successively checking if smaller variants of
the original failing test case are still failing cases. When the shrinking process
terminates, a (locally) minimal failing test case is presented to the user. The user
can provide custom shrinking functions that specify what simplifications should
be tried on the failing case. This is a method akin to delta debugging [22].

For example, if we find a randomly generated concrete trace which makes an
invariant fail, the shrinking function says that we should try removing one step
from the trace to see if it is still a counter example. When the shrinking process
fails, the trace we produce is minimal in the sense that every step in the trace
is needed to make the invariant fail. One should note that it is very valuable to

Finding Counter Examples in Induction Proofs 55

have short counter examples; it drastically reduces the time spent on analyzing
and fixing the errors found.

3.2 Trace Counter Examples

A trace counter example is a counter example of type (1) in the previous section.
We decided to search for trace counter examples in the following manner (this is
inspired by ’State Machine Specifications’ in [14]). Given a set of participating
processes, we can construct an exhaustive list of possible operations (examples
of operations could be: process X receives a Halt-message, process Y crashes,
process Z is started, etc). We constructed a QuickCheck generator that returns
a random sequence of operations. To test the invariant we then create the initial
state for the system (where all participants are dead and all message queues are
empty) and apply the operation sequence. The result is a sequence of states, and
in each state we check that the invariant holds.

If a counter example to the invariant is found, shrinking is performed by simply
removing some operations. To further shrink a test case we also try to remove one
of the participating processes (together with its operations). We illustrate how
all of this works with the (trivially incorrect) invariant ∀Pid.¬isLeader(Pid)
(i.e. there is never a leader elected). Formulated in QuickCheck, the property
looks as follows:

prop_NeverALeader =
\path -> checkPath leStoller (forAll pid (nott (isLeader pid))) path

We use the function checkPath, which takes three arguments: a model of an
Erlang program (in this case leStoller), a first-order formula (the property)
and a trace (called path), and checks that the given formula is true for all states
encountered on the specified path. The QuickCheck property states that the
result should be true for all paths. Running QuickCheck yields:

*QCTraceCE> quickCheck prop_NeverALeader
*** Failed! Falsifiable (after 3 tests and 3 shrinks):
Path 1 [AcStart 1]

The counter example is a path involving one process (indicated by “Path 1”, and
one step where we start that process (indicated by “AcStart 1”), and clearly
falsifies the property. (The leader election algorithm is such that if there is only
a single participant, it is elected immediately when it is started.) This counter
example has been shrunk, in 3 shrinking steps, from an initial, much larger,
counter example. The steps it went through, removing unnecessary events, in
this case were:

Path 1 [AcOnMsg 1 AcLdr,AcOnMsg 1 AcDown,AcOnMsg 1 AcAck,AcOnMsg 1 AcHalt,
AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]

Path 1 [AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]
Path 1 [AcStart 1,AcStart 1]
Path 1 [AcStart 1]

56 K. Claessen and H. Svensson

Here, “AcOnMsg p m” indicates that process p receives a message of type m.
The different message types (“AcLdr”, “AcDown”, “AcAck”, etc.) are part of the
internal details of Stoller’s leader election protocol [18] and are not explained
here.

Being able to quickly generate locally minimal counter examples to candidate
invariants greatly improved our productivity in constructing a correct set of
invariants.

3.3 Induction Step Counter Examples

Step counter examples are counter examples of type (2). To find step counter
examples is more challenging. Step counter examples can be expected when the
stated invariant holds, but its pre-conditions are too weak to be proved. The
proof fails in the step case, that is there exists a (non-reachable) state s such
that the invariant is true in s, but false in some state s′, such that s′ ∈ next(s).
The difference from trace counter examples is that we are now looking for non-
reachable states, which are significantly harder to generate in a good way.

Our first, very naive, try was to simply generate completely random states, and
check if the proof obligation can be falsified by these. We implemented this strat-
egy by constructing a random generator for states and tried to use QuickCheck
in the straightforward way. However, not surprisingly, this fails miserably. The
reason is that it is very unlikely for a randomly generated state to fulfill all pre-
conditions of the proof obligation for the transition. Other naive approaches,
such as enumerating states in some way, do not work either, since the number of
different states are unfeasibly large, even with very small bounds on the number
of processes and number of messages in message queues.

The usual way to solve this in QuickCheck testing is to make a custom gen-
erator whose results are very likely to fulfill a certain condition. However, this is
completely unpractical to do by hand for an evolving set of about 90 invariants.

Instead, we implemented a test data generator generator. Given a first-order
formula φ, our generator-generator automatically constructs a random test data
generator which generates states that are very likely to fulfill φ. So, instead
of manually writing a generator for each invariant Invi, we use the generator-
generator to generate one. We then use the resulting generator in QuickCheck
to check that the property holds.

Our generator-generator, given a formula φ, works as follows. Below, we define
a process, called adapt that, given a formula φ and a state s, modifies s so that it
is more likely to make φ true. The generator first generates a completely random
state s, and then successively adapts s to φ a number of times. The exact number
of times can be given as a parameter.

The adapt process works as follows. Given a formula φ and a state s, we do
the following:

1 Check if s fulfills φ. If so, then we return s.
2 Otherwise, look at the structure of φ.

• If φ is a conjunction φ1∧φ2, recursively adapt s to the left-hand conjunct
φ1, and then adapt the result to the right-hand conjunct φ2.

Finding Counter Examples in Induction Proofs 57

• If φ is a disjunction φ1 ∨ φ2, randomly pick a disjunct φi, and adapt s
to it.

• If φ starts with a universal quantifier ∀x ∈ S.ψ(x), S will be con-
cretely specified by the state s. We construct a big explicit conjunction∧

x∈S ψ(x), and adapt s to it.
• If φ starts with an existential quantifier ∃x ∈ S.ψ(x), construct a big

explicit disjunction
∨

x∈S ψ(x), and adapt s to it.
• If φ is a negated formula, push the negations inwards and adapt s to the

non-negated formula.
• If φ is a (possibly negated) atomic formula, change s so that the atomic

formula is true, if we know how to (see below). Otherwise, just return s.

Quantifiers in φ always quantify over things occurring in the state s, for example
the set of all processes, or the set of all processes currently alive, etc. When
adapting s to φ, these sets are known, so we can create explicit conjunctions or
disjunctions instead of quantifiers.

When randomly picking a disjunct, we let the distribution be dependent on
the size of the disjuncts; it is more likely here to pick a large disjunct than a
small disjunct. This was added to make the process more fair when dealing with
a disjunction of many things (represented as a number of binary disjunctions).

Finally, we have to add cases that adapt a given state s to the atomic formulae.
The more cases we add here, the better our adapt function becomes. Here are
some examples of atomic formulae occurring in φ, and how we adapt s to them:

– “message queue q1 is empty”, in this case we change the state s such that
q1 becomes empty;

– “process p1 is not alive”, in this case we remove p1 from the set of alive
processes in s;

– “queue q1 starts with the message Halt”, in this case we simply add the
message Halt to the queue q1.

Note that there is no guarantee that an adapted state satisfies the formula. For
example, when adapting to a conjunction, the adaption process of the right-hand
conjunct might very well undo the adaption of the left-hand conjunct. It turns
out that successively adapting a state to a formula several times increase the
likelihood of fulfilling the formula. There is a general trade-off between adapting
a few states many times or adapting many states fewer times. The results of
our experiments suggest that adapting the same state 4-8 times is preferable
(Sect. 4).

The final property we give to QuickCheck looks as follows; remember the
problem ⎛

⎝
∧

j∈Pi

Invj

⎞

⎠ → [Sys] Invi

and let invs be the left hand side of the implication, inv is Invi and applySys
corresponds to the []-operation:

58 K. Claessen and H. Svensson

prop_StepProofObligation invs inv sys =
\state ->

forAll (adapt formula state) $ \state’ ->
checkProperty formula state’

where formula = and (nott inv’ : invs)
inv’ = applySys sys inv

This can be read as: For all states s, and for all adaptions s′ of that state s to
the proof obligation, the proof obligation should hold. The function adapt is our
implementation of the adapt generator-generator, and checkProperty checks if
a given formula is true in a given state. Remember that we want to find a counter
example state, that is why we try to adapt the state so that the pre-conditions
(invs) are fulfilled but inv’ is not.

The experimental results are discussed in the next section.

4 Results

In this section we present some results from the usage of search for counter
examples in the verification of the leader election algorithm. Since the data
comes from only one verification project it might not be statistically convincing,
but it should be enough to give some idea of how well the search for counter
examples works in practice.

4.1 Trace Counter Examples

To illustrate the effectiveness of trace counter examples we first show one par-
ticular example. In Fig. 2 we see an invariant A that was added to the set of
pre-conditions in order to be able to prove another invariant B (i.e. this was the
action taken after a failed proof attempt in category 2, as described in Sect. 2.1).
The original invariant B was easily proved after this addition, however we could
not prove the new invariant A. After several days of failed proof attempts, we
managed to (manually) find a counter example. The counter example was really
intricate, involving four different nodes and a non-trivial sequence of events.

With this unsatisfying experience in fresh memory, we were eager to try the
trace counter example finder on this particular example. The result was very
positive, the counter example was quickly found (in the presented run after 170
tests), and we could quickly verify that it was equivalent to the counter example
that we found manually. The result of the QuickCheck run on this example is
presented in Fig. 3.

The counter example consists of a Path value. From this value we can conclude
that the counter example involves four processes. We can also see the sequence
of operations leading to a state where the invariant is falsified. This sequence
contains five process starts (AcStart), three process crashes (AcCrash) and two
receives of Down-messages by process number 3 (AcOnMsg). It is interesting to
see that the fourth process is never started, and never actually does anything,
nevertheless it must be present in order to falsify the invariant (or else the
shrinking would have removed it).

Finding Counter Examples in Induction Proofs 59

∀Pid, Pid2,Pid3.((
((Pid ∈ alive)
∧ elem(m Down(Pid2),

queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (status[host(Pid)] = elec 1))
→ ¬((pendack[host(Pid3)] > host(Pid))

∧ (Pid3 ∈ alive)
∧ (status[host(Pid3)] = elec 2))

)
)

Whenever a process (Pid) is
alive, in the first election phase
(elec 1) and it receives a Down-
message such that Pid has received
Down-messages from everyone with
higher priority (that is the hosts in
the set lesser(host(Pid))). Then
no other process (here Pid3) is
alive, in the second election phase
and having communicated with
Pid (i.e. having a pendack value
larger than host(Pid)).

Fig. 2. A broken invariant

*** Failed! Falsifiable (after 170 tests and 30 shrinks):
Path 4 [AcStart 2,AcStart 3,AcCrash 2,AcStart 1,AcCrash 1,

AcOnMsg 3 AcDown,AcStart 2,AcOnMsg 3 AcDown,AcStart 1,AcCrash 1]

Fig. 3. Trace counter example

Evaluation of Trace Counter Examples. Although the verification process
was complicated, we did not have very many badly specified invariants around
to test with. The presented example was the most complicated and in total we
had some five or six real ’broken’ invariants to test with. (All of them produced
a counter example.) To further evaluate the trace counter example search in a
more structural way, we used a simplistic kind of mutation testing. We took each
invariant and negated (or if it was already negated, removed the negation) all
sub-expressions occurring on the left hand side of an implication. Thereafter we
tried the trace counter example search for each of the mutated invariants.

In total we generated 272 mutated invariants. We tried to find a trace counter
example for each, and succeeded in 187 cases (where we randomly generated
300 test cases for each invariant). However, we should not expect to find a trace
counter example in all cases, since some of the mutated invariants are still true
invariants. Manual inspection of 10 of the 85 (272 − 187 = 85) failed cases
revealed only two cases where we should expect to find a counter example. (A
re-run of the two examples with a limit of 1000 generated tests was run, and a
counter example was found in both cases.)

4.2 Induction Step Counter Examples

To illustrate how the inductive step counter examples could be used we use
the invariant presented below as an example. This invariant was actually the
last invariant that was added in order to complete the proof of the leader
election algorithm. The invariant specifies a characteristic of the acknowledge-
ment messages sent during election.

60 K. Claessen and H. Svensson

∀Pid, Pid2,Pid3.(
(((Pid2 �= Pid3)

∧ elem(m Ack(Pid,Pid2),
queue(host(Pid)))

∧ (host(Pid2) = host(Pid3)))
→ ¬elem(m Ack(Pid,Pid3),

queue(host(Pid)))
)

)

If Pid2 and Pid3 are two differ-
ent processes at the same host, and
an Ack-message from Pid2 to Pid
is in Pid’s queue, then there can
not also be an Ack-message in the
queue of Pid sent by Pid3 to Pid.

Fig. 4. Invariant for step counter example example

The first proof attempt included invariants 3, 14 and 15 (which are also
invariants that specify properties about Ack-messages), i.e. we tried to prove
(Inv3 ∧ Inv14 ∧ Inv15 ∧ Inv89) → [Sys] Inv89. This proof attempt fails, and if
we search for an induction step counter example we get the following state:

State with 2 processes:
* Alive: {(2,3),(2,5)}
* Pids: {(2,3)}
[Process: (1,2)
Status: norm Elid: (2,3) Ldr: 1 Pendack: 2
Queue: [Ack (1,2) (2,3)]
Acks: {} Down: {},

Process: (2,3)
Status: wait Elid: (1,2) Ldr: 2 Pendack: 2
Queue: [Halt (1,2)]
Acks: {} Down: {}]

The system state consists of two sets alive (that contains the process identifiers
of all processes currently alive) and pids (that contains all process identifiers
ever used). A process identifier is implemented as a pair of integers. Furthermore,
the individual state of each process is also part of the system state. Each process
state has a number of algorithm-specific variables (Status, Elid, etc.), and an
incoming message queue.

In the counter example we see that the second process has a Halt-message
from the first process in its queue at the same time as there is an Ack-message
in the queue of the first process. That means that in the next step the second
process could acknowledge the Halt-message, and thus create a state in which
the invariant is falsified. Indeed such a situation can not occur, and we actually
already had an invariant (with number 84) which stated exactly this. Therefore,
if we instead try to prove: (Inv3 ∧Inv14 ∧Inv15 ∧Inv84 ∧Inv89) −→ [Sys]Inv89
we are successful.

Evaluation of Step Counter Examples. In the verification of the leader
election algorithm we used 89 sub-invariants which were proved according to the
scheme

(Inv1 ∧ Inv2 ∧ · · · ∧ Invk) −→ [Sys] Inv1.

Finding Counter Examples in Induction Proofs 61

Since the automated theorem provers are rather sensitive to the problem size,
we put some effort into creating minimal left hand sides of the implication. That
is, we removed the sub-invariants that were not needed to prove a particular
sub-invariant.

Therefore, a simple way to generate evaluation tests for the step counter
example search is to remove yet another sub invariant from the left hand side
and thus get a problem which in most cases (the minimization was not totally
accurate) is too weak to be proved in the step case. Thus, we generate a set of
problems like

(Inv1 ∧ Inv2 ∧ · · · Invk−1 ∧ Invk+1 ∧ · · · ∧ Invn) −→ [Sys] Inv1

and evaluate the step counter example search on this set of problems.
In this way, the 89 proof obligations were turned into 351 problems to test

the step counter example search with. More careful analysis revealed that 30 of
the problems were actually still provable, thus leaving 321 test cases. The result
of running the step counter example search in QuickCheck with 500 test cases
for each problem, and a varying number of adapt rounds, is presented in Fig. 5.

In the figure we see that with only one iteration of adapt we find a counter
example for around 75% of the tested problems. By increasing the number adapt
rounds, we find a counter example for 97% of the tested problems within 500
test cases.

0

100

200

300

Max

 0 50 100 150 200 250 300 350 400 450 500

C
ou

nt
er

 e
xa

m
pl

es

Test cases

Finding counter examples 1-20 iterations and 500 test cases

1 iteration
2 iterations
4 iterations
8 iterations

20 iterations

Fig. 5. Step counter example results

62 K. Claessen and H. Svensson

0

200

400

600

800
Max

 0 50 100 150 200 250 300 350 400 450 500

C
ou

nt
er

 e
xa

m
pl

es

Test cases

Finding counter examples 1-20 iterations and 500 test cases

1 iteration
2 iterations
4 iterations
8 iterations

20 iterations

Fig. 6. Step counter example results

In reality, case-splitting [8] turned these 321 into 1362 smaller problems of
which 524 are provable. The results of running the step counter example search
in QuickCheck for each of these smaller problems are presented in Fig. 6. The
results are quite similar to the results in the earlier figure.

Our conclusion is that this way of finding counter examples is remarkably ef-
fective, especially keeping in mind that the counter example search we presented
is a fully automatic and a very cheap method. Running QuickCheck for a failed
proof attempt takes only from a few seconds, sometimes up to a few minutes.

Another important aspect is the quality of the counter examples; i.e. given an
induction step counter example, how hard is it to figure out how to strengthen the
invariant to make it provable. Of course this is hard to measure, and any judge-
ment here is highly subjective. We randomly selected some of the found counter
examples and inspected them more carefully. In most cases it was easy to find out
which sub-invariant to add, which was the original purpose of the method.

Interestingly, in some examples, the counter example indicated that a certain
sub-invariant was missing, which was different from the sub-invariant we had
removed. (Remember, we generated the tests by removing one sub-invariant
from already proved examples.) It turned out that we could actually prove the
problem by either using the removed sub-invariant or the sub-invariant suggested
by the counter example. For example: from the (already proved) problem (Inv4∧
Inv7∧Inv8) −→ [Sys]Inv8 we removed Inv4. This resulted in a counter example,
which indicated that adding Inv2 would probably make it possible to prove the

Finding Counter Examples in Induction Proofs 63

sub-invariant. Indeed the problem (Inv2 ∧ Inv7 ∧ Inv8) −→ [Sys] Inv8 could be
proved. The reason for this is that Inv2 and Inv4 were partially overlapping.
The conclusion must nevertheless be that an induction step counter example is
most often very useful.

5 Discussion and Conclusion

We have identified different categories of reasons why proof attempts that es-
tablish inductive invariants may fail, and developed a method that can identify
2 of these categories by giving feedback in terms of a concrete counter example.

We would like to argue that the results show that this is a useful method;
very often counter examples are found when they should be found, and they are
easy to understand because of the (local) minimality. The method is also very
cheap, once the system is set up, it does not take much time or resources to run
300 random tests. Every time we make changes to the set of invariants, a quick
check can be done to make sure no obvious mistakes have been made.

For related work, just like pure first-order logic theorem provers, interactive
theorem proving systems usually do not provide feedback in terms of a counter
example either. ACL2 [15] provides feedback by producing a log of the failed
proof attempt. While sometimes useful, we would like to argue that feedback in
terms of counter examples (and in terms of different kinds of counter examples)
is more directly useful for a user. In some work in the context of rippling [17],
a failed proof attempt is structurally used to come up with an invariant for
while-loops in imperative programs.

The interactive higher-order logic reasoning system Isabelle comes with a ver-
sion of QuickCheck [6]. However, there is no control over generators or shrinking
present in this version. The work presented here can possibly be integrated with
Isabelle by extending their QuickCheck with the necessary features.

Some might argue that the main problems presented in the paper disappear
when moving to a reasoning system that supports induction, for example ACL2
or a higher-order theorem prover. However, in such systems it is still useful to
have a notion of different reasons why inductive proofs fail, and the three types
of counter examples (1), (2) and (3) are just as useful in such systems.

For future work, we are looking to further reduce the gap between problems
where proofs are found and problems where counter examples are found. We are
currently working to augment a theorem prover to also give us feedback that can
be used to identify categories (3) and (4). For category (3), an approximation of
a non-standard counter model is produced, for category (4), the theorem prover
can tell why it has not found a proof yet.

Moreover, we want to study liveness more closely, and integrate liveness check-
ing (and finding counter examples) in the overall verification method.

Finally, to increase the applicability of our work, we would like to separate
out the different parts of our current system; the counter example finding from
the Erlang-specific things, and the leader-election-specific axioms and invariants
from the general Erlang axioms.

64 K. Claessen and H. Svensson

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Armstrong, J.: Programming Erlang – Software for a Concurrent World. The Prag-
matic Programmers (2007), http://books.pragprog.com/titles/jaerlang

3. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs (1996)

4. Arts, T., Claessen, K., Svensson, H.: Semi-formal development of a fault-tolerant
leader election protocol in Erlang. In: Grabowski, J., Nielsen, B. (eds.) FATES
2004. LNCS, vol. 3395, pp. 140–154. Springer, Heidelberg (2005)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Berghofer, T., Nipkow, S.: Random testing in isabelle/hol. In: Software Engineer-
ing and Formal Methods. SEFM 2004. Proceedings of the Second International
Conference, September 28-30, 2004, pp. 230–239 (2004)

7. Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality.
Presentation at Dagstuhl Seminar 05431 on Deduction and Applications (October
2005)

8. Claessen, K., Hähnle, R., Mårtensson, J.: Verification of hardware systems with
first-order logic. In: Proc. of Problems and Problem Sets Workshop (PaPS) (2002)

9. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: ICFP 2000: Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pp. 268–279. ACM, New York
(2000)

10. Weidenbach, C., et al.: SPASS: An automated theorem prover for first-order logic
with equality, http://spass.mpi-sb.mpg.de

11. Fredlund, L.-Å., Svensson, H.: McErlang: A model checker for a distributed func-
tional programming language. In: Proc. of International Conference on Functional
Programming (ICFP), ACM SIGPLAN, New York (2007)

12. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Transactions
on Computers C-31(1), 48–59 (1982)

13. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

14. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006)

15. Kaufmann, M., Moore, J.S.: ACL2 - A Computational Logic / Applicative Common
Lisp, http://www.cs.utexas.edu/users/moore/acl2/

16. Schulz, S.: The e equational theorem prover, http://eprover.org
17. Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Proceedings,

8th International Workshop on Logic Based Program Synthesis and Transformation
(1998)

18. Stoller, S.D.: Leader election in distributed systems with crash failures. Technical
Report 481, Computer Science Dept., Indiana University, May 1997. Revised (July
1997)

19. Svensson, H., Arts, T.: A new leader election implementation. In: ERLANG 2005:
Proceedings of the 2005 ACM SIGPLAN workshop on Erlang, pp. 35–39. ACM
Press, New York (2005)

http://books.pragprog.com/titles/jaerlang
http://spass.mpi-sb.mpg.de
http://www.cs.utexas.edu/users/moore/acl2/
http://eprover.org

Finding Counter Examples in Induction Proofs 65

20. Voronkov, A.: Vampire, http://www.vampire.fm
21. Wordsworth, J.B.: Software Engineering with B. Addison-Wesley, Reading (1996)
22. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT

2002/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foundations
of software engineering, pp. 1–10. ACM, New York (2002)

http://www.vampire.fm

A Logic-Based Approach to Combinatorial

Testing with Constraints

Andrea Calvagna1 and Angelo Gargantini2

1 University of Catania - Italy
andrea.calvagna@unict.it

2 University of Bergamo - Italy
angelo.gargantini@unibg.it

Abstract. Usage of combinatorial testing is wide spreading as an ef-
fective technique to reveal unintended feature interaction inside a given
system. To this aim, test cases are constructed by combining tuples of
assignments of the different input parameters, based on some effective
combinatorial strategy. The most commonly used strategy is two-way
(pairwise) coverage, requiring all combinations of valid assignments for
all possible pairs of input parameters to be covered by at least one test
case. In this paper a new heuristic strategy developed for the construction
of pairwise covering test suites is presented, featuring a new approach
to support expressive constraining over the input domain. Moreover, it
allows the inclusion or exclusion of ad-hoc combinations of parameter
bindings to let the user customize the test suite outcome. Our approach
is tightly integrated with formal logic, since it uses test predicates to
formalize combinatorial testing as a logic problem, and applies an exter-
nal model checker tool to solve it. The proposed approach is supported
by a prototype tool implementation, and early results of experimental
assessment are also presented.

1 Introduction

Verification of highly-configurable software systems, such as those supporting
many optional or customizable features, is a challenging activity. In fact, due
to its intrinsic complexity, formal specification of the whole system may require
a great effort. Modeling activities may become extremely expensive and time
consuming, and the tester may decide to model only the inputs and require
they are sufficiently covered by tests. On the other hand, unintended interaction
between optional features can lead to incorrect behaviors which may not be
detected by traditional testing [22,33].

A combinatorial testing approach is a particular kind of functional testing
technique consisting in exhaustively validating all combinations of size t of a
system’s inputs values. This is equivalent to exhaustively testing t-strength in-
teraction between its input parameters, and requires a formal modeling of just
the system features as input variables. In particular, pairwise interaction testing
aims at generating a reduced-size test suite which covers all pairs of input values.

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 66–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Logic-Based Approach to Combinatorial Testing with Constraints 67

Significant time savings can be achieved by implementing this kind of approach,
as well as in general with t-wise interaction testing, which has been experimen-
tally shown to be really effective in revealing software defects [21]. A test set that
covers all possible pairs of variable values can typically detect 50% to 75% of the
faults in a program [27,9]. Other experimental work shown that 100% of faults
are usually triggered by a relatively low degree of features interaction, typically
4-way to 6-way combinations [22]. For this reason combinatorial testing is used
in practice and supported by many tools [26].

From a mathematical point of view, the problem of generating a minimal set
of test cases covering all pairs of input values is equivalent to finding a covering
array (CA) of strength 2 over a heterogeneous alphabet [18]. Covering arrays
are combinatorial structures which extend the notion of orthogonal arrays [2]. A
covering array CAλ(N ; t, k, g) is an N x k array with the property that in every
N x t sub -array, each t-tuple occurs at least λ times, where t is the strength
of the coverage of interactions, k is the number of components (degree), and
g = (g1, g2, ...gk) is a vector of positive integers defining the number of symbols
for each component. When applied to combinatorial system testing only the case
when λ = 1 is of interest, that is, where every t-tuple is covered at least once.

In this paper we present our approach to combinatorial testing, which is tightly
integrated with formal logic, since it uses test predicates to formalize combina-
torial testing as a logic problem. The paper is organized as follows: section 2
gives some insight on the topic and recently published related works. Section 3
presents our approach and an overview of the tool we implemented, while sec-
tion 4 explains how we deal with constraints over the inputs. Section 5 presents
some early results of experiments carried out in order to assess the validity of
the proposed approach. Finally, section 6 draws our conclusions and points out
some ideas for future extension of this work.

2 Combinatorial Coverage Strategies

Many algorithms and tools for combinatorial interaction testing already exist
in the literature. Grindal et al. count more than 40 papers and 10 strategies in
their recent survey [15]. There is also a web site [26] devoted to this subject. We
would like to classify them according to Cohen et al. [7], as:

a)algebraic when the CA is given by mathematical construction as in [20]. These
theoretic based approaches generally leads to optimal results, that is mini-
mal sized CA. Unfortunately, no mathematical solution to the covering ar-
ray generation problem exists which is generally applicable. Williams and
Probert [31] showed that the general problem of finding a minimal set of
test cases that satisfy t−wise coverage can be NP-complete. Thus, heuristic
approaches, producing a sub-optimal result are widely used in practice.

b) greedy when some search heuristic is used to incrementally build up the CA,
as done by AETG [5] or by the In Parameter Order (IPO)[27]. This approach
is always applicable but leads to sub-optimal results. Typically, only an upper
bound on the size of constructed CA may be guaranteed. The majority of

68 A. Calvagna and A. Gargantini

existing solutions falls in this category, including the one we are proposing
here.

c) meta-heuristic when genetic-algorithms or other less traditional, bio-inspired
search techniques are used to converge to a near-optimal solution after an
acceptable number of iterations. Only few examples of this applications are
available, to the best of our knowledge [6,25].

Besides this classifications, it must be observed that most of the currently
available methods and tools are strictly focused on providing an algorithmic
solution to the mathematical problem of covering array generation only, while
very few of them account also for other complementary features, which are rather
important in order to make these tools really useful in practice, like i.e. the ability
to handle constraints on the input domains. We have identified the following
requirements for an effective combinatorial testing tool, extending the previous
work on this topic by Lott et al. [23]:

Ability to state complex constraints. This issue has been recently in-
vestigated by Cohen et al. [7] and recognized as a highly desirable feature of
a testing method. Still according to Cohen et al., just one tool, PICT [8], was
currently found able to handle full constraints specification, that is, without re-
quiring remodeling of inputs or explicit expansion of each forbidden test cases.
However, there is no detail on how the constraints are actually implemented in
PICT, limiting the reuse of its technique. Most tools require the user to re-write
the specification in a way that the inputs are separated and unconstrained, but
when combined the satisfy the constraints. AETG [5] and the TestCover [28]
service follow this approach. Other tools, like the IBM Whitch [16], require the
user to explicitly list all the forbidden combinations. Note that if constraints
on the input domain are to be taken into account then finding a valid test case
becomes an NP-hard problem [3]. In our work, not only we address the use of
full constraints as suggested in [7] but we feature the use of generic predicates to
express constraints over the inputs (see section 4 for details). Furthermore, while
Cohen’s general constraints representation strategy has to be integrated with an
external tool for combinatorial testing, our approach tackles every aspect of the
test suite generation process.

Ability to deal with user specific requirements on the test suite. The
user may require the explicit exclusion or inclusion of specific test cases, e.g. those
generated by previous executions of the used tool or by any other means, in order
to customize the resulting test suite. The tool could also let the user interactively
guide the on-going test case selection process, step by step. Moreover the user
may require the inclusion or exclusion of sets of test cases which refer to a
particular critical scenario or combination of inputs. In this case the set is better
described symbolically, for example by a predicate expression over the inputs.
Note that instant [15] strategies, like algebraic constructions of orthogonal arrays
and/or covering arrays, and parameter-based, iterative strategies, like IPO, do
not allow this kind of interaction.

A Logic-Based Approach to Combinatorial Testing with Constraints 69

Integration with other testing techniques. Combinatorial testing is just
one testing technique. The user may be interest to integrate results from many
testing techniques, including those requiring very complex formalisms (as in
[14,12,11,13]). This shall not be limited to having a common user-interface for
many tools. Instead, it should go in the direction of generating a unique test-suite
which simultaneously accounts for multiple kinds of coverages (e.g., combinato-
rial, state, branch, faults, and so on). Our method, supported by a prototype
tool, aims at bridging the gap between the need to formally prove any specific
properties of a system, relying on a formal model for its description, and the
need to also perform functional testing of its usage configurations, with a more
accessible black-box approach based on efficient combinatorial test design. Inte-
grating the use of a convenient model checker within a framework for pairwise
interaction testing, our approach gives to the user the easy of having just one
convenient and powerful formal approach for both uses.

Recently, several papers investigated the use of verification methods for com-
binatorial testing. Hnich et al. [19] translates the problem of building covering
arrays to a Boolean satisfiability problem and then they use a SAT solver to
generate their solution. In their paper, they leave the treatment of auxiliary
constraints over the inputs as future work. Conversely, Cohen et al. [7] exclu-
sively focuses on handling of with constraints and present a SAT-based constraint
solving technique that has to be integrated with external algorithms for com-
binatorial testing like IPO. Kuhn and Okun [21] try to integrate combinatorial
testing with model checking (SMV) to provide automated specification based
testing, with no support for constraints. In this work we investigate the integra-
tion of model checkers with combinatorial testing in the presence of constraints
while supporting all of the additional features listed above.

3 A Logic Approach to Pairwise Coverage

We now describe our approach to combinatorial testing which we can classify as
logic-based and which is supported by the ASM Test Generation Tool (ATGT)1.
ATGT was originally developed to support structural [14] and fault based testing
[13] of Abstract State Machines (ASMs), and it has been extended to support
also combinatorial testing. Since pairwise testing aims at validating each possible
pair of input values for a given system under test, we then formally express each
pair as a corresponding logical expression, a test predicate (or test goal), e.g.:

p1 = v1 ∧ p2 = v2

where p1 and p2 are two inputs or monitored variables of enumerative or boolean
domain and v1 and v2 are two possible values of p1 and p2 respectively. The eas-
iest way to generate test predicates for the pairwise coverage of an ASM model
is to employ a combinatorial enumeration algorithm, which simply loops over
1 A preview release of the tool is available at the following URL:

http://cs.unibg.it/gargantini/projects/atgt/.

70 A. Calvagna and A. Gargantini

Fig. 1. Antidiagonal order in combinatorial indexing of the values pairs, n and m being
the ranges of two input parameters

the variables and their values to build all the possible test predicates. Another
variation of the test predicate generation algorithm we support is the antidiago-
nal algorithm, which instead has been specially devised to output an ordered set
of logic test predicates (tp) such that no two consecutive tp ≡ p1 = v1 ∧ p2 = v2
and tp′ ≡ p′1 = v′1 ∧ p′2 = v′2 where p1 = p′1 and p2 = p′2 will have v1 = v′1
or v2 = v′2. Simply put, for each pair of input variables, the algorithm indexes
through the matrix of their possible values in antidiagonal order, see Fig.1. Thus,
generating their sequence of pair assignments such that both values always differ
from previous ones. 2 This alternative way of ordering of the pairs combinations
to be covered is motivated by a performance improvement it produces on the
execution of our covering array generation algorithm, as will be explained later
in Sect. 3.3.

In order to correctly derive assignment pairs required by the coverage we
assume the availability of a formal description of the system under test. This de-
scription includes at least the listing of input parameters and respective domains
(finite and discrete). The description has to be entered in the ATGT tool as an
ASM specification in the AsmetaL language [29]. The description is then parsed
and analyzed by our tool in order instantiate a convenient corresponding data
structure. As an example, consider the following, which declares two parameters
both with domain size three, without constraints:

asm simpleexample signature :
enum domain D = {V1 | V2 | V3 }
dynamic monitored p1 : D
dynamic monitored p2 : D

The ASM model has to declare the domains, which currently must be either
boolean or an enumeration of constants, like in the given example. The keyword
monitored alerts the tool that the following parameter is in the set of input
variables under test. Non monitored variables and variables of other types are
ignored.
2 Apart from the set’s first and last pairs special cases.

A Logic-Based Approach to Combinatorial Testing with Constraints 71

3.1 Tests Generation

A test case is a set of assignments, binding each monitored (input) variable
to a value in its proper domain. It is easy to see that a test case implicitly
covers as many t-wise test predicates as

(
n
t

)
, where n is the number of system’s

input parameters and t = 2 (for pairwise interaction testing) is the strength of
the covering array. A given test suite satisfies the pairwise coverage iff all test
predicates are satisfied by at least one of its test cases. Note that the smallest
test suite is that in which each test predicate is covered by exactly one test case.
Note that a test predicate in pairwise coverage binds only two variables to their
values, while a test case assigns values to all the monitored variables.

By formalizing the pairwise testing by means of logical predicates, finding
a test case that satisfy a given predicate reduces to a logical problem of sat-
isfiability. To this aim, many logical solvers, like e.g. constraint solvers, SAT
algorithms, SMT (Satisfiability Modulo Theories) solver, or model checkers can
be applied. Our approach exploits a well known model checker tool, namely the
bounded and symbolic model checker tool SAL [10]. Given a test predicate tp,
SAL is asked to verify a trap property [11] which is the logical negation of tp:
G(NOT(tp)). The trap property is not a real system property, but enforces the
generation of a counter example, that is a set of assignments falsifying the trap
property and satisfying our test predicate. The counter example will contain
bindings for all monitored inputs, including those parameters missing (free) in
the predicate, thus defining the test case we were looking for.

A first basic way to generate a suitable test suite consists in collecting all the
test predicates in a set of candidates, extracting from the set one test predicate at
the time, generating the test case for it by executing SAL, removing it from the
candidates set, and repeating until the candidates set is empty. This approach,
which according to [15] can be classified as iterative, is very inefficient but it can
be improved as follows.

Skip already covered test predicates. Every time a new test case s is added
to the test suite, s always covers

(
n
t

)
test predicates, so the tool detects if any

additional test predicate tp in the candidates is covered by s by checking whether
s is a model of tp (i.e. it satisfies tp) or not, and in the positive case it removes
tp from the candidates.

Randomly process the test predicates. Randomly choosing the next predi-
cate for which the tool generates a test case makes our method non deterministic,
as the generated test suite may differer in size and composition at each execu-
tion of the algorithm. Nevertheless, it is important to understand the key role
played on the final test suite outcome by just the order in which the candidate
test predicates are choose for processing. In fact, each time a tp is turned into
a corresponding test case it will dramatically impact on the set of remaining
solutions which are still possible for the next test cases. This is clear if we con-
sider the following: the ability to reduce the final test suite size depends on the
ability to group in each test case the highest possible number of uncovered tps.

72 A. Calvagna and A. Gargantini

The grouping possibilities available in order to build a test case starting from
the tp currently selected for processing are directly proportional to the number
and ranges of involved input variables, and limited by input constraint relations.
Thus, for a given example, they can vary from tp to tp, and since each processing
step will actually subtract to the next grouping possibilities, eventually the first
step, that is the choice of first tp to process, will be the most influent, as it will
indirectly impact on the whole test suite composition process.

Ordered processing of test predicates. A different policy is to order the tps
in the candidates pool according to a well defined ordering criterion, and then
process them sequentially. At each iteration, the pool is again sorted against this
criterion and the first test predicate is selected for processing. In order to do this
we define a novelty comparison criteria as follows.

Definition 1. Let t1 and t2 bet two test predicates, and T a test suite. We say
that t1 is more novel than t2 if the variables assignments of t1 have been already
tested in T less times than the assignments of t2.

Ordering by novelty and taking the most novel one helps ensuring that during
the test suite construction process, for each parameter, all of its values will be
evenly used, which is also a general requirement of CAs. To this purpose, usage
counting of all values of all parameters in current test suite is performed and
continuously updated by the algorithm, when this optional strategy is enabled.

Despite deterministic processing of the tps has the advantage of producing
repeatable results, and we also included this option in our tool, it requires ad-
ditional computational effort in order to guess the correct processing order of
the test predicates, that is, that producing the best groupings. On the other
hand, random processing strategy accounts for average performance in all suite
of practical applications, and the rather small computation times easily allows
for several trials to be shoot, and the best result to be statistically improved
without significant additional effort.

3.2 Reduction

Even if one skips the test predicates already covered, the final test suite may still
contain some test cases which are redundant. We say that a test case is required
if contains at least a test predicate not already covered by other test cases in the
test suite. We then try to reduce the test suite by deleting all the test cases which
are not required in order to obtain a final test suite with fewer test cases. Note,
however, that an unnecessary test case may become necessary after deleting
another test case from the test suite, hence we cannot simply remove all the
unnecessary test predicates at once. We have implemented a greedy algorithm,
reported in Alg. 1, which finds a test suite with the minimum number of required
test cases.

A Logic-Based Approach to Combinatorial Testing with Constraints 73

Algorithm 1. Test suite reduction

T = test suite to be optimized
Op = optimized test suite
Tp = set of test predicates which are not covered by tests in Op

0. set Op to the empty set and add to Tp all the test predicates
1. take the test t in T which covers most test predicates in Tp and add t to Op
2. remove all the test predicates covered by t from Tp
3. if Tp is empty then return Op else goto 1

3.3 Composing Test Predicates

Since a test predicate binds only the values of a pair of variables, all the other
variables in the input set are still free to be bound by the model checker. Besides
guiding the choice of the selected test predicate in some effective way, we can only
hope that the model checker will choose the values of unconstrained variables
in order to avoid unnecessary repetitions, such that the total number of test
cases will be low. It is apparent that a guide in the choice of the values for all
the variables not specified by the chosen test predicate is necessary to improve
the effectiveness of test case construction, even if this may require a greater
computational effort. To this aim, our proposed strategy consist in composing
more test predicates into an extended, or composed test predicate,which specifies
the values for as many variables as possible. We define a composed test predicate
the conjoint of one or more test predicates. When creating a composed test
predicate, we must ensure that we will be still able to find a test case that
covers it. In case we try to compose too many test predicates which contradict
each other, there is no test case for it. We borrow some definitions from the
propositional logic: since a sentence is consistent if it has a model, we can define
consistency among test predicates as follows.

Definition 2. Consistency A test predicate tp1 is consistent with a test pred-
icate tp2 if there exists a test case which satisfies both tp1 and tp2.

Let us assume now, for simplicity, that there are no constraints over the variables
values so that the composition will take into account just the variables values of
the test predicates we compose. The case where constraints over the model are
defined will be considered in Sect. 4.

Theorem 1. Let tp1 : v1 = a1 ∧ v2 = a2 and tp2 : v3 = a3 ∧ v4 = a4 be
two pairwise test predicates. They are consistent if and only if ∀i ∈ {1, 2}∀j ∈
{3, 4}vi = vj → ai = aj .

We can add a test predicate tp to a composed test predicate TP , only if tp is
consistent with TP . This keeps the composed test predicate consistent.

74 A. Calvagna and A. Gargantini

Algorithm 2. Pseudo code for the main algorithm

C = the set of logical test predicates of the form (p1=v1 AND p2=v2), to be covered
T = the Test Suite initially empty
0. reset usage counts for bindings of all parameters.
1. if C is empty then return T and stop
2. (optional) sort the tps in C according to their novelty or shuffle C
3. pick up the first tp, P, from C
4. try composing P’ by joining P with other consistent test predicates in C
5. run SAL trying to prove the trap property G(not(P’))
6. convert resulting counter example into the test case tc, and add tc to T
7. remove from C all tps in P’ and all additional tps covered by tc
8. update usage frequencies for all covered tps.
9. goto step 1

Theorem 2. A conjoint TP of test predicates is consistent with a test predicate
tp if and only if every t in TP is consistent with tp.

Now the test suite is built up by iteratively adding new test cases until no
more tps are left uncovered, but each test predicate is composed from scratch
as a logical conjunction of as many still uncovered tps as possible. The heuristic
stage of this approach is in the process of extracting from the pool of candidate
tps the best sub-set of consistent tps to be joined together into TP. Than, the
resulting composed test predicate is in turn is used to derive a new test case by
means of a SAL counterexample.

3.4 Composing and Ordering

The initial ordering of the predicates in the candidate pool may influence the
later process of merging many pairwise predicates into an extended one. In fact,
the candidates tps for merging are searched sequentially in the candidates pool.
The more diversity there will be among subsequent elements of the pool and
the higher will be the probability that a neighboring predicate will be found
compatible for merging. This will in turn impact on the ability to produce a
smaller test suite, faster, given that the more pairwise predicates have been
successfully compacted into the same test case and the less number of test cases
will be needed to have a complete pairwise coverage.

There are more than one strategy we tested in order to produce a effective
ordering of the predicates, to easy the merging process. In the implemented tool
one can choose the test predicate at step 2 by the following several pluggable
policies which impact on the efficiency of method. By adopting the random
policy, the method randomly chooses at step 2 the next test predicate and check
if it is consistent. By novelty policy the method chooses the most novel test
predicate and try to combine it with the others already chosen. The resulting
whole process is described in Alg. 2.

A Logic-Based Approach to Combinatorial Testing with Constraints 75

4 Adding Constraints

We now introduce the constraints over the inputs which we assume are given in
the specification as axioms in the form of boolean predicates. For example for
the well known asm specification example Basic Billing System (BBS) [23], we
introduce an axiom as follows:

axiom inv calltype over billing, calltype :
billing = COLLECT implies calltype != INTERNATIONAL

To express constraints we adopt the language of propositional logic with equality
(and inequality)3. Note that most methods and tools admit only few templates
for constraints: the translation of those templates in equality logic is straightfor-
ward. For example the require constraint is translated to an implication; the
not supported to a not, and so on. Even the method proposed in [7] which
adopt a similar approach to ours prefer to allow constraints only in a form of
forbidden configurations [17], since it relies for the actual tests generation on
existing algorithms like IPO. A forbidden combination would be translated in
our model as not statement. Our approach allows the designer to state the con-
straints in the form he/she prefers. For example, the model of mobile phones
presented in [7] has 7 constraints. The constraint number 5 states that “Video
camera requires a camera and a color display”. In [7], this constraint must be
translated into two forbidden tuples, while we allow the user simply to write the
following axiom, which is very similar to the informal requirement.

axiom inv 5 over videoCamera, camera, display :
videoCamera implies (camera!= NO CAMERA and display != BLACK WHITE)

A constraint may not only relate two variable values (to exclude a pair), but it
can contain generic bindings among variables. Any constraint models an explicit
binding, but their combination may give rise to complex implicit constraints. In
our approach, the axioms must be satisfied by any test case we obtain from the
specification, i.e. a test case is valid only if it does not contradict any axiom in
our specification. While others [4] distinguish between forbidden combinations
and combinations to be avoided, we consider only forbidden combinations, i.e.
combinations which do satisfy the axioms. Finding a valid test case becomes with
the constraints a challenge similar to finding a counter example for a theorem
or proving it. For this reason verification techniques are particularly useful in
this case and we have investigated the use of the bounded and symbolic model
checkers in SAL.

To support the use of constraints, they must be translated in SAL and this
requires to embed the axioms directly in the trap property, since SAL does not
support assumptions directly. The trap property must be modified to take into
account the axioms. The general schema for it becomes:

3 SAL, as other SMT solvers, has decision theories for linear arithmetic, uninterpreted
functions, etc.. However, since we consider only inputs with enumerative domains,
users can only write constraints as logic propositions with equality at most.

76 A. Calvagna and A. Gargantini

G(<AND axioms>) => G(NOT(<test predicate>)) (1)

A counter example of the trap property (1) is still a valid test case. In fact, if the
model checker finds an assignment to the variables that makes the trap property
false, it finds a case in which both the axioms are true and the implied part of
the trap property is false. This test case covers the test predicate and satisfies
the constraints.

Without constraints, we were sure that a trap property derived from a consis-
tent test predicate had always a counter example. Now, due to the constraints,
the trap property (1) may not have a counter example, i.e. it could be true and
hence provable by the model checker. We can distinguish two cases. The simplest
case is when the axioms are inconsistent, i.e. there is no assignment that can
satisfy all the constraints. In this case each trap property is trivially true since
the first part of the implication (1) is always false. The inconsistency may be not
easily discovered by hand, since the axioms give rise to some implicit constraints,
whose consequences are not immediately detected by human inspection. For ex-
ample a constraint may require a �= x, another b �= y while another requires
a �= x → b = y; these constraints are inconsistent since there is no test case
that can satisfy them. Inconsistent axioms must be considered as a fault in the
specification and this must be detected and eliminated. For this reason when we
start the generation of tests, if the specifications has axioms, we check that the
axioms are consistent by trying to prove:

G(NOT <AND axioms>)

If this is proved by the model checker, then we warn the user, who can ignore
this warning and proceed to generate tests, but no test will be generated, since
no valid test case can be found. We assume now that the axioms are consistent.
Even with consistent axioms, some (but not all) trap properties can be true:
there is no test case that can satisfy the test predicate and the constraints. In
this case we define the test predicate as unfeasible.

Definition 3. Let tp a test predicate, M the specification, and C the conjunction
of all the axioms. If the axioms are consistent and the trap property for tp is
true, i.e. M ∧ C |= ¬tp, then we say that tp is unfeasible. Let tp be the pair of
assignments v1 = a1 ∧ v2 = a2, we say that this pair is unfeasible.

An unfeasible pair of assignments represents a set of invalid test cases: all the test
cases which contain this pair are invalid. Our method is able to detect infeasible
pairs, since it can actually prove the trap property derived from it. The tool
finds and marks the infeasible pairs, and the user may derive from them invalid
test cases to test the fault tolerance of the system.

For example, the following test predicate results infeasible for the BBS exam-
ple:

calltype = INTERNATIONAL and billing = COLLECT −−−> unfeasible

Note that since the BMC is in general not able to prove a theorem, but only
to find counter examples, it would be not suitable to prove unfeasibility of test

A Logic-Based Approach to Combinatorial Testing with Constraints 77

predicates. However, since we know that if the counter example exists then it
has length 1, if the BMC does not find it we can infer that the test predicate is
unfeasible.

4.1 Composition and Constraints

By introducing constraints, Theorems 1 and 2 are no longer valid and the com-
position method presented in Sect. 3.3 must be modified. Every time we want
to add a test predicate to a conjoint of test predicates we have to check its
consistency by considering the constraints too. We can exploit again the model
checker SAL. Given a test predicate tp, the axioms Axs and the conjoint TPs,
we can try to prove by using SAL:

G(<TPs>) AND G(<Axs>) => G(NOT(tp))

If this is proved, we skip tp since it is inconsistent with TPs, otherwise we can
add tp to TPs and proceed.

4.2 User Defined Test Goals and Tests

Our framework is suitable to deal with user defined test goals. In fact, the user
may be interested to test some particular critical situations or input combina-
tions and these combinations are not simple pairwise assignments. Sometimes
these combinations are n assignments to n variables (for example with n=3 one
could specify a 3-wise coverage) but this is not the most general case. We assume
that the user defined test goals are given as generic logical predicates, allowing
the same syntax as for the constraints. The user wants to obtain a test case which
covers these test goals. For example, we allow the user to write the following test
goal:

testgoal loop:
access = LOOP and billing != CALLER

and calltype != LOCALCALL;

which requires to test a combination of inputs such that access is LOOP but
the billing is not the CALLER and the calltype is not LOCALCALL. A counter
example for the trap property derived from the test goal loop is again a test case
that covers the test goal.

Besides user defined test goals, we allow also user defined test cases (sometimes
called seeds) The user may have already some tests cases to be considered, which
have already been generated (by any other means). For example, the user may
add the following test:

test basic call:
access = LOOP, billing = CALLER,
calltype = LOCALCALL, status = SUCCESS;

78 A. Calvagna and A. Gargantini

Table 1. Test suite size and time (in sec.) using several options

one tp at the time collect + reduction

spec mc no opt time skip +rnd +antDg +nov red time no rnd rnd time
TCAS SMC 837 310 352 113 300 280 241 113 107 100 45
TCAS BMC 837 352 452 120 452 420 419 200 110 101 48

three four SMC 48 22 37 20 37 30 10 15 19 10 10
three four BMC 48 16 37 23 37 28 10 18 20 10 10

Note that a test case specifies the exact value of all the input variables, while
a test predicate specifies a generic scenario. ATGT allows the tester to load an
external file containing user defined tests and test goals. When an external file
is loaded, ATGT adds the user defined test in the set of test predicates to be
covered. Than it adds the user defined tests and it checks which test predicates
are satisfied by these tests. In this way the tester can decide to skip the test
predicates covered by tests he/she has written ad hoc.

5 Early Evaluation

We have experimented our method in three different ways. First we explored the
impact of the run-time configuration options on the tool itself. The second set of
experiments aimed at exploring the tool’s combinatorial algorithm performance.
And the last set of experiment assessed the validity of our approach in the
presence of constrained models. Experiments were executed on a PPC G4 1,5Mhz
processor, equipped with 1Gbyte of physical memory.

We report in Tab. 1 the results of the experiments regarding the use of all the
options presented in this paper applied to the case study TCAS, which models a
Traffic Collision Avoidance System described in [21] and to the benchmark model
three four which contains three variables with four possible values each. If no
optional features are selected (no opt column) the test suite will contain as many
tests as the test predicates. Still covering one test predicate at the time, if one
applies the skip policy and either the random, or the anti diagonal or the novelty
technique, the size of the test suite and the time taken is reduced. However,
if one applies the reduction algorithm (red column) we found no difference
among which other technique is applied before the reduction. The best results are
obtained applying the collect and the reduction. In this case we found the best
results when applying the random strategy (rnd column). While it is widely
recognized that the Bound Model Checker (BMC) performs better then the
Symbolic Model Checker (SMC) when searching for counter example, we found
the opposite: the SMC generally performed better than BMC.

In Table 2 we compared the size of the test suites obtained applying our best
method with results from several tools available in the literature [8][18]. This
new set of experiments was designed in order assess the scalability of the combi-
natorial algorithm we implemented. Note that we adopt below the exponential
symbolic notation used in [18] to represent the problem domain size. Reported

A Logic-Based Approach to Combinatorial Testing with Constraints 79

Table 2. Combinatorial performance comparison

Task ATGT AETG PairTest TConfig CTS Jenny AllPairs PICT
[5] [27] [32] [16] [30] [24] [8]

34 11 9 9 9 9 11 9 9
313 23 15 17 15 15 18 17 18
415317229 62 41 34 40 39 38 34 37
41339235 65 28 26 30 29 28 26 27
2100 25 10 15 14 10 16 14 15
410 37 31 28 28 30
420 54 34 28 28 37
430 68 41 40 40 41
440 88 42 40 40 43
450 104 47 40 40 46
460 114 47 40 40 49
470 127 49 40 40 50
480 136 49 40 40 52
490 143 52 43 43 53
4100 151 52 43 43 53
1020 367 180 212 231 210 193 197 210

results clearly show that our algorithm performed worse than the others for
every benchmark. Despite the performance is still reasonable for simpler tasks,
it decays rapidly with the increase of the task size. Also, the time to generate
the tests (which are not reported but are in the order of few tens to many hun-
dreds of seconds) are significantly greater than the average time taken by other
tools, mainly due to the fact that we iteratively call an external program (SAL)
by exchanging files. However, this problem could be alleviated easily with an
hardware upgrade. As far as the time taken by the generation of tests is kept
within minutes, we believe that it is not an issue, since this test suite generation
is done only once. Note that the pure numeric performance of the combinator-
ial algorithm was never meant to be an objective of primary importance in our
intentions, being it really to explore the viability of using model checkers for
testing purposes. The current ATGT combinatorial test generation algorithm
has been devised purposely to support us to this aim only, that is, being more
flexible and integrated with other testing techniques, as explained earlier in this
paper. We are very confident that its combinatorial efficiency could still be im-
proved significantly if desired, although we intentionally left this issue outside
the scope of this paper.

In Table 3 results for constrained asm specifications are reported. All the ex-
ample’s domains used in this case were subject to a number of restrictions in
the form of asm axioms, quantitatively reported in the third column. Computed
test suite sizes with and without constraints are reported. In this set of ex-
periments we considered three example specifications taken from the literature.
BBS is a basic billing system presented in [23] that processes telephone call data
with four call properties, and in which every property has three possible values.

80 A. Calvagna and A. Gargantini

Cruise Control models a simple cruise control system originally presented in [1],
while the Mobile Phone example models the optional features of a real-world
mobile phone product line, and has been recently presented in [7]. In all the
computed test suites the tool was able to correctly handle the axioms restrictions
in order ensure complete coverage of all non-forbidden pairs, without the need
to enumerate those pairs explicitly. This has been particularly helpful in the
last example, involving many explicit and also a few implicit (to be derived)
constraints. Size of computed test suite is also the least possible in the presence
of the constraints, and equals the size of the test suite computed in [7]. Note that
in two of the considered cases the test suite size increased with respect to their
unconstrained equivalent, while it decreased in the last one, where constraints
where more pervasive. Figure 2 reports all the AsmetaL axioms translating the
constraints for this model.

Table 3. Test suite sizes for constrained models

Name Task size # of constraints constrained size unconstrained size

BBS 34 1 13 11

Cruise Control 413124 2 8 6

Mobile Phone 3322 7 9 11

axiom inv 1 over display, email : display=BW implies email!=GV
axiom inv 2 over display, camera : display=BW implies camera!=MP2
axiom inv 3 over camera, email : camera=MP2 implies email!=GV
axiom inv 4 over display, camera : display=MC8 implies camera!=MP2
axiom inv 5 over videoCamera, camera, display :

videoCamera implies (camera!=NOC and display!=BW)
axiom inv 6 over camera, videoRingtones : camera=NOC implies !videoRingtones
axiom inv 7 over display, email, camera :

!(display=MC16 and email=TV and camera=MP2)

Fig. 2. Constraints for mobile phone example

6 Conclusions and Future Work

In this paper we presented a logic based approach to combinatorial testing,
supporting a number of original features, to the best of our knowledge, which
have been also implemented in the software tool ATGT. These contributions
include: support for Asm specifications, support for expressing constraints on
the input domain as formal predicate expression on the input variables, inte-
grated support for multiple types of coverages evaluation over the same system
specification, support for combinatorial test case generation through selectable
random or deterministic strategies, and support for user-level customization of
the derived combinatorial test suite by import or banning of specific set of test
cases. This work is currently on going and early evaluation results have been

A Logic-Based Approach to Combinatorial Testing with Constraints 81

presented in this paper. We believe that our approach satisfies, even though not
completely, the three goals stated in the introduction: ability to state complex
constraints, ability to deal with user specific requirements on the test suite, and
integration with other testing technique.

We plan to improve our technique along these directions. We already support
enumerations and boolean, but we plan to extend also to: domain products (e.g.
records), functions (arrays), derived functions, and discrete, finite sub-domains
of integer. Converting integers to enumerations by considering each number one
enumeration constant, is unfeasible unless for very small domains. We plan to
investigate the partition of integer domains in sub-partitions of interest. We plan
to extend the language of the constraints by allowing generic temporal logic
expressions, which may specify how the inputs evolve. For this reason, we chose
the model checker SAL instead of a simple SMT solver in the first place: it is
able to deal with temporal constraints and transition systems. Moreover, further
improvements can include taking into account the output and state variables,
assuming that a complete behavioral model for the given system is available,
and the binding of monitored input variables to some initial value at the system
start state. We plan to apply combinatorial testing to complete specifications
and compare it with other types of testing like structural testing [12] and fault
based testing [13], which, however, require a specification complete of outputs,
controlled variables, and transition rules.

References

1. Atlee, J.M., Buckley, M.A.: A logic-model semantics for SCR software require-
ments. In: International Symposium on Software Testing and Analysis, ACM,
New York (1996)

2. Bose, R.C., Bush, K.A.: Orthogonal arrays of strength two and three. The Annals
of Mathematical Statistics 23(4), 508–524 (1952)

3. Bryce, R.C., Colbourn, C.J.: Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Information & Software Technology 48(10), 960–970
(2006)

4. Bryce, R.C., Colbourn, C.J., Cohen, M.B.: A framework of greedy methods for
constructing interaction test suites. In: ICSE 2005, pp. 146–155. ACM, New York
(2005)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system:
An approach to testing based on combinatorial design. IEEE Transactions On
Software Engineering 23(7) (1997)

6. Cohen, M.B., Colbourn, C.J., Gibbons, P.B., Mugridge, W.B.: Constructing test
suites for interaction testing. In: ICSE 2003, pp. 38–48 (2003)

7. Cohen, M.B., Dwyer, M.B., Shi, J.: Interaction testing of highly-configurable sys-
tems in the presence of constraints. In: ISSTA International symposium on Soft-
ware testing and analysis, pp. 129–139. ACM Press, New York (2007)

8. Czerwonka, J.: Pairwise testing in real world. In: 24th Pacific Northwest Software
Quality Conference (2006)

82 A. Calvagna and A. Gargantini

9. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model-based testing in practice. In: International Conference on
Software Engineering ICSE, May 1999, pp. 285–295. Association for Computing
Machinery, New York (1999)

10. de Moura, L., Owre, S., Rueß, H., Shankar, J.R.N., Sorea, M., Tiwari, A.: SAL 2.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer,
Heidelberg (2004)

11. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and
ESEC-FSE 1999. LNCS, vol. 1687, Springer, Heidelberg (1999)

12. Gargantini, A., Riccobene, E.: Asm-based testing: Coverage criteria and auto-
matic test sequence generation. JUCS 10(8) (November 2001)

13. Gargantini, A.: Using model checking to generate fault detecting tests. In: Gure-
vich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 189–206. Springer,
Heidelberg (2007)

14. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM
2003. LNCS, vol. 2589, Springer, Heidelberg (2003)

15. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey.
Softw. Test, Verif. Reliab 15(3), 167–199 (2005)

16. Hartman, A.: Ibm intelligent test case handler: Whitch,
http://www.alphaworks.ibm.com/tech/whitch

17. Hartman, A.: Graph Theory, Combinatorics and Algorithms Interdisciplinary Ap-
plications, Chapter Software and Hardware Testing Using Combinatorial Covering
Suites, pp. 237–266. Springer, Heidelberg (2005)

18. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. DMATH:
Discrete Mathematics 284(1-3), 149–156 (2004)

19. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the
covering test problem. Constraints 11(2-3), 199–219 (2006)

20. Kobayashi, N., Tsuchiya, T., Kikuno, T.: Non-specification-based approaches to
logic testing for software. Journal of Information and Software Technology 44(2),
113–121 (2002)

21. Kuhn, D.R., Okum, V.: Pseudo-exhaustive testing for software. In: SEW 2006:
IEEE/NASA Software Engineering Workshop, pp. 153–158. IEEE Computer So-
ciety, Los Alamitos (2006)

22. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Software Eng. 30(6), 418–421 (2004)

23. Lott, C., Jain, A., Dalal, S.: Modeling requirements for combinatorial software
testing. In: A-MOST 2005: Proceedings of the 1st international workshop on Ad-
vances in model-based testing, pp. 1–7. ACM Press, New York (2005)

24. McDowell, A.: All-pairs testing,
http://www.mcdowella.demon.co.uk/allpairs.html

25. Nurmela, K.: Upper bounds for covering arrays by tabu. Discrete Applied Math-
ematics 138(1-2), 143–152 (2004)

26. Pairwise web site, http://www.pairwise.org/
27. Tai, K.C., Lie, Y.: A test generation strategy for pairwise testing. IEEE Trans.

Softw. Eng. 28(1), 109–111 (2002)
28. TestCover tool, http://www.testcover.com/
29. The asmeta project, http://asmeta.sourceforge.net
30. Jenny Combinatorial Tool,

http://www.burtleburtle.net/bob/math/jenny.html

http://www.alphaworks.ibm.com/tech/whitch
http://www.mcdowella.demon.co.uk/allpairs.html
http://www.pairwise.org/
http://www.testcover.com/
http://asmeta.sourceforge.net
http://www.burtleburtle.net/bob/math/jenny.html

A Logic-Based Approach to Combinatorial Testing with Constraints 83

31. Williams, A.W., Probert, R.L.: A measure for component interaction test cover-
age. In: AICCSA, pp. 304–312. IEEE Computer Society, Los Alamitos (2001)

32. Williams, A.W.: Determination of test configurations for pair-wise interaction
coverage. In: Proceedings of the 13th International Conference on the Testing of
Communicating Systems (TestCom 2000), August 2000, pp. 59–74 (2000)

33. Yilmaz, C., Cohen, M.B., Porter, A.A.: Covering arrays for efficient fault char-
acterization in complex configuration spaces. IEEE Trans. Software Eng. 32(1),
20–34 (2006)

Functional Testing in the Focal Environment

Matthieu Carlier and Catherine Dubois

CÉDRIC-ENSIIE,
1 square de la résistance, 91025 Évry Cedex, France

{carlier,dubois}@ensiie.fr

Abstract. This article presents the generation and test case execution
under the framework Focal. In the programming language Focal, all prop-
erties of the program are written within the source code. These properties
are considered, here, as the program specification. We are interested in
testing the code against these properties. Testing a property is split in
two stages. First, the property is cut out in several elementary properties.
An elementary property is a tuple composed of some pre-conditions and
a conclusion. Lastly, each elementary property is tested separately. The
pre-conditions are used to generate and select the test cases randomly.
The conclusion allows us to compute the verdict. All the testing process
is done automatically.

1 Introduction

The Focal environment [9], developed by the Focal project1 (initiated by T.
Hardin and R. Rioboo and further developed by researchers coming from labo-
ratories LIP6, CÉDRIC and INRIA), allows one to incrementally build library
components and to formally prove their correctness. A component of a Focal li-
brary can contain specifications, implementations of operations and proofs that
the implementations satisfy their specifications. In the early development stages,
components contain only specifications, then step by step components are refined
and completed with implementations by a refinement mechanism based on in-
heritance. Proofs may be done at any time. The Focal environment incorporates
a prover called Zenon [4] which can automatically discharge proof obligations,
with the help of intermediate lemmas given by the user. Focal components are
translated into OCaml executable code and are verified by the Coq proof assis-
tant [12].

Even if the Focal environment ensures a high level of confidence because of
its methodology based on specification and proof, we cannot do without testing.
Here are some reasons:

– The user, based on the informal specification from the user or the domain
expert, writes the formal system specification. In Focal, it consists in formal
properties maybe distributed in different components. For some of them the
developer will provide a proof that the code is correct with respect to this

1 http://focal.inria.fr

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 84–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://focal.inria.fr

Functional Testing in the Focal Environment 85

formal specification. But some of the properties may not be proven, for ex-
ample low level properties about the addition of machine integers (we trust
them because of external formal formalizations) or very general mathemat-
ical properties. In the latter case, these properties are assumed to be true
(the keyword assumed is used instead of giving a sketch of proof). These
properties may become test objectives.

– In the context of a functional validation process, when it is independent
from the validation done by the development team, engineers often verify
by testing the correctness of the final software with respect to their own
specification. Let us call this specification the external one. So thanks to the
inheritance mechanism of Focal, these external properties can be encoded in
Focal in a component, from which the implementation will inherit. Then as
previously it becomes possible to verify by testing if the code satisfies these
new properties.

– There exist some basic types in Focal, e.g. int. This type is translated into
the Ocaml type int and the Coq type Z. So in the executable code, machine
integers are used but proofs are done with inductively defined integers. So
we have some confidence in the code but we must test code to verify if the
properties are verified, in particular around the bounds.

– Some OCaml untrusted code may be imported in a Focal certified code. No
proof is done on this imported code.

– When Zenon, the prover integrated with Focal, does not succeed in proving
a property automatically, two issues are possible: either it is not true or
Zenon needs to be helped by giving some intermediate lemmas the user
has to find. So before beginning the latter expensive task, we can test a
not yet proven property in order to discover a counter-example or to have
more confidence in the property. It can also be used to have confidence in
the lemmas we need to introduce while proving a property (e.g. invariants,
technical intermediate lemmas, supplementary assertions). In this context,
testing is used for debugging specifications and programs before a proof is
attempted or while it is being attempted. Such testing facilities have been
integrated into the Isabelle [2] or Agda/Alfa [10] proof assistants.

In this paper we propose to test the code with respect to the expected proper-
ties written by the specifier or expressly introduced by the tester as for instance
metamorphic relations (as introduced by Chen, Tse and Zhou [6]). We describe
the testing framework and the corresponding tool FocalTest. More precisely a
property, considered as an executable predicate, is exercised with some randomly
generated inputs. Experience shows this style of testing is a useful method for
debugging programs and specifications as exemplified by the tool Quickcheck
developed for Haskell by Claessen and Hugues [8].

The tool FocalTest automatically produces the test environment and the
drivers to conduct the tests. We benefit from the inheritance mechanism to
isolate this testing code, called the testing harness in the paper, from the com-
ponents written by the programmer.

86 M. Carlier and C. Dubois

The paper is organized as follows. First we briefly present the environment
Focal and its large-spectrum language also called Focal. Then in Section 3, we
define the syntax of the properties allowed for testing and overviews the testing
procedure. The generation of the testing harness is detailed in Section 4. We
illustrate our purpose with the triangle example in Section 5. Section 6 proposes
a coverage analysis. Lastly we mention some related work before some concluding
remarks and perspectives.

2 The Focal Environment and Its Language

The program development environment Focal is a framework dedicated to the
complete development of certified components —in the sense of piece of specifi-
cation/code proved correct with respect to the specifications— from the specifi-
cation stage to the implementation one. In this section we give a brief overview
of the underlying language, also called Focal. For further explanations please
consult the documentation at http://focal.inria.fr and [9].

The language Focal is a functional language whose syntax is close to OCaml. It
also incorporates some object oriented features such as inheritance, abstraction,
late binding and redefinition. It allows us to define two kinds of structures, species
and collections.

Roughly speaking a species defines a set of values that can be manipulated
through functions called methods. At early stages in the development, those
values and methods are abstract. For methods it means the user only writes
their type, i.e. the types of the parameters and the result. He/she can also write
specifications as properties involving the methods. As an example let us consider
the species Setoid that specifies the notion of a set equipped with an equivalence
relation equal:

species setoid =
rep;
sig equal in self -> self -> bool;
property equal_refl: all x in self, equal(x,x)
property equal_sym: all x, y in self, equal(x,y) -> equal(y,x);
property equal_trans: all x, y, z in self,

equal(x,y) -> equal(y,z) -> equal(x,z);
end

This small example deserves some explanations about syntax: self is put for the
type of the elements defined in the current species. The keyword rep introduces
the type of the elements manipulated by the methods of the species. In the early
development phases, it is usually abstract as in the example, it is later refined
and defined as a concrete type à la ML called the carrier type.

Let us complete this species with a binary method different which returns
true if its arguments are different and false otherwise. We can define this
function although equal is not already defined (#not_b is the predefined opera-
tion on booleans) thanks to the mechanism of late binding. Furthermore we can

http://focal.inria.fr

Functional Testing in the Focal Environment 87

demonstrate a property, that is different and equal are dual from each other.
The proof is not detailed here —no proof will be shown in the paper— because
its form does no matter in this paper.

let different(x,y)= #not_b(equal(x,y));
theorem different_not_equal: all x, y in self,

different(x,y) <-> (not equal(x,y))
proof:
...

Species may be defined from scratch but they are usually defined by using inher-
itance, more precisely multiple inheritance. Thus a Focal development forms a
hierarchy whose nodes are species. Nodes close to a root correspond to pieces of
specifications whereas deep nodes are made more and more precise, and then are
close to implementations. Along inheritance paths, methods, carriers, properties
can be refined (defined or redefined, proved in the case of properties). When a
carrier type is defined in an inherited species, it cannot be redefined.

A species is said complete when every declared method (inherited or not) is
defined and every stated property (inherited or not) has been proved or admitted
(in such a case the proof is replaced by the special keyword assumed).

Collections are the implementations of species. A collection derives from a
complete species. Collections are the leaves of the inheritance graph, cannot be
refined by inheritance (like a final Java class for example). A collection is close
to an abstract data type: it defines a type whose representation is abstracted
and elements of the collection can only be manipulated with the help of the
collection (those of the generating species, inherited or not).

The type of a collection is its interface obtained from the complete species
the collection derives from: by removing definitions and proofs and abstracting
the rep type in all the method types. The interface of a collection is named
as the complete generative species it comes from. Interfaces can be ordered by
inclusion, which gives a very simple notion of sub-typing.

Species can be parameterized by collections. The formal parameter is intro-
duced by a name c and an interface I. Any collection CC having an interface
including I can be used as an actual parameter for c. In the species body, the
methods and properties of the parameter are denoted by c!m. The fact that CC
has been created upon a complete species ensures that no link error can ar-
rive at runtime and that proofs of CC can be used as lemmas. Species can also
be parameterized by elements of collections, themselves introduced as parame-
ters, thus introducing a dependence between parameters. Type-checking forbids
dependence cycles between parameters.

3 Testing Properties

3.1 Overview

Usually, software testing requires the definition of an oracle that will determine
whether or not an input/output pair satisfies a given predicate. The oracle is

88 M. Carlier and C. Dubois

traditionally the tester itself, another existing program or an executable specifi-
cation. In this case, during the execution of a test case, the tester or the testing
tool will compare the actual output with the expected output computed by the
oracle in order to establish the verdict. Our motivation is to verify the code
by testing some properties extracted from the specifications or expressly written
from test purpose. Since a property defines an executable predicate, we just need
to know if the target property holds or not for some valuations of its bounded
variables. Thus properties serve as oracles in their general acception.

The only information required in the test of a property are the test set and
the verdict of the calculus. We can consider the property under test as a tuple
composed of some pre-conditions and a conclusion that will help us to decide if
test data are relevant or not and to compute the test verdict.

Testing a property of a species S requires to execute the methods involved
in the statement. Thus those methods need to be defined in S or inherited.
Furthermore the carrier type must be defined at this stage in order to be able
to design test cases. For simplicity we impose that S is a complete species (no
matter whether the proofs are done or not, we do not care about them). This
hypothesis can be relaxed without any difficulty. In fact, a dependency analysis,
already implemented in the Focal compiler, is enough to verify if the property
to be tested can be executed.

The property under test is either defined in the species or inherited. Thus it
can have been written at any development stage and can be a very abstract one.

3.2 Testable Properties

Focal allows us to express a large class of properties. Because efficiently testing
any property is not possible at first glance2, we restrict ourselves to the class of
testable properties which take the following form:

∀X1 : τ1 . . . Xn : τn.α1 ⇒ . . . ⇒ αn ⇒ (A1
1 ∨ . . . ∨ A1

n1
)∧ . . .∧ (Am

1 ∨ . . . ∨ Am
nm

)

where the αi are produced by the grammar

α ::= α ∨ α|α ∧ α|A

The atomic formulas A and Aj
i are calls to Focal boolean methods, with an op-

tional negation, and τ1 . . . τn denote Focal types.So, testable properties are some
first order formulas in prenex form without any existential quantifier. These for-
mulas may contain free variables, the Focal compiler ensures that these variables
are well defined somewhere in the species or the inheritance path.

We distinguish two parts in these properties: the pre-condition and the con-
clusion.

Definition 1. Let P ≡ ∀X1 : τ1 . . . Xn : τn.α1 ⇒ . . . αn ⇒ β. We call the
pre-condition (resp. the conclusion) of the property P , the predicate Pre(P) =
α1 ∧ . . . ∧ αn (resp. Con(P) = β).
2 The ∃ quantifier is known to be a difficult problem.

Functional Testing in the Focal Environment 89

3.3 Elementary Properties

In order to test a property, we first transform it into a set of simpler properties
called elementary properties by applying the rewriting rules detailed in Figure 1.
All the properties issued from the transformation will be tested separately. They
are all together logically equivalent to the initial property (see Theorem 1). The
reason why we transform a property into a set of elementary ones is that the
property may specify a large variety of behaviors. Intuitively, an elementary
property specifies a more restricted effect.

α1 ⇒ . . . ⇒ (β1 ∨ . . . ∨ βm) ⇒ . . . ⇒ αn �−→

�����
����

α1 ⇒ . . . ⇒ β1 ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ β2 ⇒ . . . ⇒ αn

...
α1 ⇒ . . . ⇒ βm ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ (β1 ∧ . . . ∧ βm) ⇒ . . . ⇒ αn �−→ α1 ⇒ . . . ⇒ β1 ⇒ . . . ⇒ βm ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ αn ⇒ (β1 ∧ . . . ∧ βm) �−→

���
��

α1 ⇒ . . . ⇒ αn ⇒ β1

...
α1 ⇒ . . . ⇒ αn ⇒ βm

Fig. 1. Rewriting system

In the rewriting rules (Figure 1), quantifiers are omitted. The first rule consists
in eliminating a disjunction appearing in the left hand side of a property, it
creates a set (more precisely a multi-set) of properties. Intuitively, it corresponds
to a case analysis. The second rule transforms a conjunction in the left hand side
by its equivalent form with implications. The third rule splits the conjunction in
the right hand side of the last implication. Like the first rule, it creates as many
properties as sub-formulas in the initial right hand side conjunction.

These transformation rules constitute a rewriting system. It terminates (trivial
by considering the number of ⇒ and ⇔ occurrences and the number of ∨ and ∧
occurrences) and is confluent (all critical pairs can be joined). So every testable
property P can be rewritten in a normal form (each formula of the set obtained
from a rewriting step is again rewritten until convergence), which is a multi-set
of formulas written P ∗

↓ . The elements of P ∗
↓ are called the elementary properties

of the original property. They have the following form:

∀X1 : τ1 . . .Xn : τn. A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨ Bm

where Ai and Bi are atomic formulas.

Theorem 1. Let P the property ∀X1 : τ1 . . . Xn : τn.A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨

Bm. So P is equivalent to
∧

f∈P ∗
↓

∀X1 : τ1 . . . Xn : τn.f

90 M. Carlier and C. Dubois

3.4 Test Procedure

The original property is not considered in the test procedure. It is replaced in this
process by its elementary properties. Each elementary property is considered and
tested separately. Thus each elementary property has its own test set (composed
of independent test cases).

A test case is a valuation σ which maps each quantified variable Xi to a
value. It is randomly generated; we detail the generation in a next section. The
elementary property ∀X1 : τ1 . . . Xn : τn.A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨ Bm is then
checked by considering its pre-condition and its conclusion in two steps:

– firstly, the pre-condition is evaluated with respect to σ. This is the validation
part of the test case. If the pre-condition reduces to false or fails, the test
case is rejected as being irrelevant. If it evaluates to true, go on with the
next step;

– lastly, if the test case passes the pre-condition, we can compute the verdict.
For that purpose, we evaluate the conclusion with respect to σ. If the result
is true, then the verdict is OK. If it is false, the verdict is KO and we have
found a counter-example that exemplifies the property is not satisfied for
that test set. Anf if an exception is raised, the tester should decide himself
if the exception is expected or not.

4 Test Harness

In this section we describe the test environment and the drivers we automatically
produce to conduct the tests.

4.1 Structure

Our tool does not modify the species S that contains the property to be tested,
FocalTest automatically derives a species SHarness from S, called here the test
harness of S. This species principally contains a method random of type int ->
self which generates random values of the carrier type, a method test prop
which implements the test loop and a method gen report which produces the
testing report (e.g. in XML format).

For the synthesis and execution of test cases, we need to create and manipulate
some data of the types given for the quantified variables of the property under
test.

The type of a quantified variable in a property can be self, a basic Focal
type int, bool . . . , a concrete ML like type, a cartesian product or one of the
abstract types described by the collections which may parameterize the species
under test. In the latter case the type receives the name of the parameter. For
example, in a species S parameterized by a collection C we can use the type
C in particular to describe the carrier type of S (e.g. rep = int * C means an
element of the species S is represented by a pair composed of an integer and an
element of C).

Functional Testing in the Focal Environment 91

We suppose the methods which generate values for the basic Focal types are
known. In the case of the self type, we need the associated concrete representa-
tion. It is available since we have assumed the species is complete. So, FocalTest
will produce the data generator by following the structure of the type (see next
section for more details). In the case where S is parameterized by a collection
C of interface S1 and when the carrier type refers to a parameter of the species
(e.g. rep = int * C), the generator of rep values will call the generator for val-
ues of type C. So, in this case the harness of S is a species parameterized by a
collection C′ whose interface is S1Harness that is the harness derived from S1.

C1Harness

S1

.

.

.
.

.

.

S

SHarness

C’: S1Harness

C: S1

S1Harness

C2Harness<C1Harness>

Fig. 2. The test hierarchy: target and harness

By extension, we call harness the set of species which add the random gener-
ators and the testing loop.

Figure 2 shows an example of a Focal hierarchy equipped with harness. Square
boxes represent species (complete species in our context) whereas rounded boxes
represent collections. Dotted arrows represent abstraction links between a col-
lection and the species it is built from (e.g. C1 and S1). Plain arrows represent
inheritance dependencies (e.g. S2Harness inherits from S2). The parameter of
a species is represented by a small dotted rectangle in the right upper corner
(e.g. S2 is parameterized by C of interface S1). When an instance is created, the
effective parameter is indicated between < and > (e.g. the collection C2 is the
result of the application of S2 on the parameter C1). In this example S1 is com-
plete. Finally FocalTest creates the collection C2Harness by applying SHarness
to C1Harness, a collection built from S1Harness.

92 M. Carlier and C. Dubois

4.2 Test Data Generation

The FocalTest tool automatically creates the methods which pseudo-randomly
generate values for the quantified variables of the test target. For each type τ ap-
pearing in the target property, FocalTest automatically defines a generator which
can produce values of this type. its body is created by following the structure of
τ . For a product type τ1 ∗ τ2, it means FocalTest generates firstly the method for
the type τ1, secondly the method for the type τ2 and lastly the methods for the
product by combining the two previous generators. Focal allows to define con-
crete types that are defined by enumerating the values constructors. In the case
of a concrete type, FocalTest generates for each constructor the generators for
the constructor parameters and then combines them into the method generating
values for the full type. In the case of the special imported OCaml types like int,
FocalTest relies on the existing methods and imports them. In case of recursive
data-types, we first choose the nature of the constructor, recursive/non-recursive
with probability 1/2. Then we take uniformly a constructor in the chosen family.

Our approach to generate random values is a naive one. The distribution is
not uniform and the generators tend to generate small sized values. However,
they do not exclude any value, in other words, the functions are surjective. This
can be improved, taking benefit from work as for instance [11].

5 FocalTest Experimentation

This section illustrates the usage of FocalTest on a classical example in testing
literature, the triangle type program. The program takes the three lengths of
the sides of a triangle and returns the nature of the triangle formed by input
lengths: Equilateral, Isosceles, Scalene or Error if the three lengths do not
define a triangle. So, the output of the program is the next Focal type:

type triangle_type =
Equilateral in triangle_type; Isosceles in triangle_type;
Scalene in triangle_type; Error in triangle_type;

The length of a triangle edge is represented by an integer considered as an el-
ement from a commutative monoid. Thus, triangles are entities of a collection
whose carrier type is a 3-tuple of lengths. The method implementing the specifi-
cation given upper is named type triangle, it has type self → triangle type.

Two kinds of properties, soundness and correctness properties, are defined to
specify the link between the arguments and the returned value of type trian-
gle. The soundness properties specify which constraints on lengths hold when
the method type triangle returns a specific value. The completeness properties
specify which value can be returned by triangle type.

The properties are shown in Figure 3. We have only detailed some of them
because lack of space. The property triangle type correct equiv states that
if the method triangle type returns the value Equilateral for the triangle
t, then its three lengths are equal and greater than zero. The other correctness
properties are similar.

Functional Testing in the Focal Environment 93

property triangle_type_complete: all t in self,
triangle_type(t) = Equilateral or triangle_type(t) = Isosceles or
triangle_type(t) = Scalene or triangle_type(t) = Error;

property triangle_type_correct_equiv: all t in self,
triangle_type(t) = Equilateral ->
(edge!equal(fst(t), snd(t)) and edge!equal(fst(t), thrd(t)) and
edge!equal(snd (t), thrd(t)) and edge!gt(fst(t), edge!zero))

Fig. 3. Some properties about type triangle

This Focal development has been tested under FocalTest. The integers imple-
menting lengths were constrained to be chosen in the interval 0–10. We tested
14 properties among those that were specified. These ones led to 40 elementary
properties and asked FocalTest to generate 10 test cases for each property. This
experiment detected no bugs. The test generation and execution were immedi-
ate. A potential overhead can be observed because of the harness compilation.
For a large majority of the properties, less than 100 irrelevant test cases were
required before obtaining the 10 valid required test cases. Some properties asked
for about 1 000 irrelevant test cases.

For evaluating the quality of our testing tool, we created 10 mutants of the
triangle program. We used mutation operations such as the replacement of an
operator or a connector by another one (e.g. ≤ by ≥, ∧ by ∨), the replacement of
a variable by another one in a property, the replacement of a constant by another
constant. We have evaluated the capacity of FocalTest to kill mutants. For this
purpose, FocalTest has been run on each mutant several times, each time with
new randomly generated test data, with the same parameters as previously. We
can notice three behaviours among the 10 mutants. 2 mutants led to properties
with unsatisfiable preconditions, a timeout was raised after 100 000 invalid test
cases for each execution of FocalTest. Another mutant was never killed, indeed
the domain (1–10) we chose was too restrictive and negative values should have
killed the mutant (an experimentation with such a domain for lengths allowed
us to confirm it). The 7 remaining mutants were killed every time FocalTest was
run.

6 Coverage Analysis

Before defining some coverage criteria, we formalize the notion of pre domain
and establish the basis of our testing method.

6.1 Pre-conditions and Pre-domains

The pre-condition and the conclusion of a testable property play a fundamental
role. Intuitively, the pre-condition defines a set of values.

94 M. Carlier and C. Dubois

Theorem 2. Let P1 and P2 such that P1 �−→ P2, then Pre(P2) implies Pre(P1).

Proof. All rules but the first leaves the pre-condition unchanged. So we have to
prove the fact for the first rule only. In that case, the pre-condition changes from
α1 ∧ . . . ∧ (β1 ∨ . . . ∨ βm) ∧ . . . ∧ αn to the pre-conditions α1 ∧ . . . ∧ βi ∧ . . . ∧ αn

for some i ∈ [1, m]. The conclusion is then obvious.

The next theorem allows us to extend the previous property to an elementary
property of P .

Theorem 3. Let P by a testable property and P ′ an elementary form of P .
Then Pre(P ′) implies Pre(P).

So any elementary property of a testable property P has a pre-condition weaker
than the pre-condition of P . So any valid test case for an elementary property
of P is a valid test case for P .

Definition 2. Let P ≡ ∀X1 : τ1 . . . Xn : τn.α1 ⇒ . . . αn ⇒ β be a testable prop-
erty. We call pre-domain of P , the set PrD(P) where (v1, . . . , vn) ∈ PrD(P) if
and only if Pre(P) holds for X1 = v1, . . . , Xn = vn.

Intuitively, for a property P , PrD(P) defines the set of all valuations σ which
validate the pre-condition of P . The following theorem shows us the link between
a property and its elementary forms according to the notion of pre-domain.

Theorem 4. If a property P ′ is an elementary form of a property P then
PrD(P ′) ⊆ PrD(P)

Proof. Since, Pre(P ′) implies Pre(P), PrD(P ′) ⊆ PrD(P) follows.

Hence, the pre-condition of each elementary form can be considered as the defin-
ition of a domain, identifying a kind of equivalence class of the pre-domain of the
initial property. Because the pre-domain of an elementary form is a subset of the
pre-domain of the original property, we can consider an elementary property as
a sub-property. The original property is the combination of these sub-properties.
So testing these properties separately is a gain since we have a finer granularity.

By the last theorem, all elementary forms of a property define a domain of
test cases which is a subset of the original property’s domain. But we should
prove we do not loose any element of the pre-domain of P by considering only
the elementary properties. Any test case in the pre-domain of P should be in
the pre-domain of, at least, one elementary property of P .

Theorem 5. Let P be a property. Let P ′
1, . . . , P ′

n the properties resulting from
the application of a rewriting rule on P . Then, PrD(P) = ∪n

i=1PrD(P ′
i).

Proof. All rules but the first one leave the pre-condition unchanged. So the
property is immediately true for these rules. For the first rule, if Pre(P) =
α1 ∧ . . . ∧ (β1 ∨ . . . ∨ βm) ∧ . . . ∧ αn then Pre(P ′

i) = α1 ∧ . . . ∧ βi ∧ . . . ∧ αn.
So, ∪n

i=1PrD(P ′
i) = {v1, . . . vm|(v1, . . . , vm) ∈ ∪n

i=1PrD(P ′
i)}. Also, by defi-

nition of PrD, (v1, . . . , vm) ∈ ∪n
i=1PrD(P ′

i) ↔ Pre(P ′
1) ∨ . . . ∨ Pre(P ′

n) holds

Functional Testing in the Focal Environment 95

for X1 = v1, . . . , Xm = vm. We prove by definition of Pre that Pre(P ′
1) ∨

. . . ∨ Pre(P ′
n) ⇔ Pre(P). And so ∪n

i=1PrD(P ′
i) = {v1, . . . , vm|(v1, . . . , vm) ∈

PrD(P)} = PrD(P).

Theorem 6. Let P be a testable property. Then PrD(P) =
⋃

P ′∈P ∗
↓

PrD(P ′).

The last theorem (following from Theorem 5 and associativity of ∪) tells us that
the rewriting system preserves pre-domains. Testing the elementary properties
separately is complete; any test case relevant for the original property is a possi-
bly test case for at least one elementary property. Two pre-domains may overlap
or even be equal (for example the third rule creates many properties all sharing
the same pre-domain). It would be interesting to detect that two non equal pre-
domains overlap. It probably means that the original property contains some
redundant parts.

An elementary form coverage criteria consists in considering all the elementary
properties obtained by the rewriting rules except the third one (to avoid pre-
condition duplication). Then for each elementary property P ′

1, select a test case
in PrD(P ′

1) which is not a member of PrD(P ′
2) for some other elementary form

P ′
2. When a test case belonging to the pre-domains of two different elementary

properties is discovered, it is worth reporting it.

6.2 A MC/DC Like Criteria

In the last section, we have proposed a first coverage criteria. Since a pre-
condition can be considered as a decision, we explore some decision coverage.
More precisely we are interested in the MC/DC coverage.

In the MC/DC criteria we have to demonstrate that every condition in a
decision changes the outcome of the decision independently of the other condi-
tions. For this purpose, for each condition there should be two test cases where
the condition evaluates differently while the other conditions evaluate to the
same value while the outcome of the decision is modified for both test cases. In
a property (or an elementary form), the pre-condition and the conclusion are
both decisions. A MC/DC style criteria for a set of elementary forms consist in
applying for each elementary form the following scenario:

– select a test set satisfying the MD/DC criteria on the pre-condition. Because
the pre-condition is a conjunction of a number of conditions, only one test
set can be applied. It requires one test case where all decisions are evaluated
to false (so the outcome of the pre-condition is false also). And for each
decision, one test case where this decision evaluates to false while the other
ones evaluate to true. It requires n + 1 test cases where n is the number of
decisions;

– select a test set satisfying the MC/DC criteria on the conclusion: i) a set
of test cases where all conditions but one evaluate to false. Each test case
should evaluate the pre-condition to true; ii) a test set where all conditions
evaluate to false.

96 M. Carlier and C. Dubois

For the first requirement, we ensure that the pre-condition can be evaluated
to false. If the pre-condition cannot be evaluated to false, it means the pre-
condition plays no role in the elementary form. This would emphasize that in
the property (before rewriting) there is a part of the pre-condition without any
effect. It also ensures each element of the pre-condition has an effect. A condition
of the pre-condition which cannot be set to false means the pre-condition of the
original property contains some useless parts.

With the second requirement, we ensure first, in the case the pre-condition
is true, all conditions in the conclusion are independent from each other and
they can all together set the conclusion to true. Like for the pre-condition, if a
condition of the conclusion is not independent from the others, it means the con-
clusion of the original property contains useless parts. The second requirement
ensures also that the conclusion can be evaluated to false.

Presently FocalTest is able to calculate the coverage of such a criterion by
the generated test sets, but only for the conclusion of each elementary property.
Pre-conditions are not yet taken into account because as soon as a test case
valuates a precondition to false, FocalTest rejects it. We have run FocalTest 10
times on the triangle example (10 test cases per property). We have obtained a
rate of 76% in the coverage of the conclusions, as defined previously.

7 Related Work

A lot of works have been done in the area of testing, especially for imperative lan-
guages and more recently for object oriented languages. For functional languages,
the interest is more recent. One of the most advanced tools for testing functional
programs is probably QuickCheck a tool for testing Haskell programs [8]. It pro-
vides a powerful specification language based on the first order logic and offers
some combinators to write specification. The user has to type a correctness prop-
erty and sends it to QuickCheck. The property could be a simple predicate or a
more complex one with a pre-condition part. The tool analyses the type of the
proposition and generates randomly test data, submits them and calculates the
verdict for an arbitrary number of test cases. For a more effective use of Quick-
Check, the user may define his own data generator. For example, if a property
deals with a sorted list of integers, the user can provide a generator which only
returns sorted lists. The Quickcheck approach and its good evaluation by users
have inspired our own approach. Gast [13] is similar to Quickcheck for the lan-
guage Clean. The user does not have to supply test data generators, they are
automatically generated for arbitrary data types. On this point, we share the
same particularity. But for recursive types, Gast does not randomly select the
size of the values, it performs a breadth-first enumeration. And so, it is usually
limited to small sized values, e.g. lists. On the contrary FocalTest tries to gen-
erate random values by distinguishing recursive constructors and non-recursive
constructors and chooses one of them with a uniform distribution.

Functional Testing in the Focal Environment 97

Other tools integrated in proof assistants have been inspired by the previous
approach. For example, in Isabelle [2] by Berghofer and Nipkow or in Agda [10]
by Dybjer, Haiyan and Takeyama. They allow the user to test some theorems
before attempting a proof. and thus to debug specifications and proofs.

Another initiative has been proposed and implemented in Isabelle/HOL. The
testing tool HOL-Testgen [5] on top of Isabelle-HOL aims to add some unit
testing features. It allows the user to write test specifications. The tool partitions
the input space of the specification and generates automatically the test script
in SML. The implementation is then tested. HOL-Testgen exploits the common
testing hypothesis formalized in [3], e.g. the regularity hypothesis. A regularity
level k hypothesis means that if an implementation satisfies the requirements for
test data of size less or equal than k then the implementation is correct for all
data.

Our approach considers a formal specification as a test oracle. A decision
procedure for the test oracle is automatically derived from the specification.
Many researchers have proposed such an approach, e.g. [1,7]. We do not use
a runtime assertion checker directly on the assertions written by the user but
on an equivalent set of more tractable and traceable properties (for coverage
computations for example).

8 Conclusion and Future Work

In this paper we have presented the FocalTest tool that permits to validate one or
several components with respect to the specifications written in them. It can be
used a posteriori or during the development process to debug specifications and
implementations or also to have some confidence in a property before proving it.
Although the case study presented in the paper is a small one, it demonstrates
that our approach and its associated tool, FocalTest, are useful to find bugs.
Furthermore, FocalTest has been used on the Focal standard library itself. It
has permitted to reveal an error in a component: a comparison operator was
wrong in a property which was not proven. In that case, the code was correctly
written but the specification was not.

We rely on randomly selected test cases. A first requirement is put on these
test cases: they must satisfy the pre-condition of the property under test. We
can repeat the random draw until convenient values are produced but it can be
an expensive process for some kind of pre-condition. To overcome this drawback,
several solutions can be proposed. A first one is to provide the user with the pos-
sibility to define a specific purpose data generator tuned to generate valid test
cases. Another method consists in exploring very carefully the pre-condition and
more precisely the definition of the involved methods in order to produce con-
straints upon the values of the variables. Then it would remain to instantiate the
constraints in order to generate test cases ready to be submitted. This method
is a white box method testing whereas the currently implemented method is a
black box testing method. This direction is one of our perspectives to improve
our testing method and is currently under study.

98 M. Carlier and C. Dubois

References

1. Antoy, S., Hamlet, D.: Automatically checking an implementation against its for-
mal specification. IEEE Trans. Softw. Eng. 26(1), 55–69 (2000)

2. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu,
Z. (eds.) Software Engineering and Formal Methods (SEFM 2004), pp. 230–239.
IEEE Computer Society, Los Alamitos (2004)

3. Bernot, G., Gaudel, M.-C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Software Engineering Journal 6(6) (1991)

4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

5. Brucker, A.D., Wolff, B.: Test-Sequence Generation with HOL-TestGen – With
an Application to Firewall Testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, Springer, Heidelberg (2007)

6. Chen, T.Y., Tse, T.H., Zhou, Z.: Fault-based testing without the need of oracles.
Information & Software Technology 45(1), 1–9 (2003)

7. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
jml and junit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002)

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices 35(9), 268–279 (2000)

9. Dubois, C., Hardin, T., Viguié Donzeau-Gouge, V.: Building certified components
within focal. In: Loidl, H.-W. (ed.) Revised Selected Papers from the Fifth Sym-
posium on Trends in Functional Programming, TFP 2004. Trends in Functional
Programming, München, Germany, vol. 5, pp. 33–48. Intellect (2006)

10. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent
type theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp.
188–203. Springer, Heidelberg (2003)

11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, ch. I-IX. In: Draft available
electronically from P. Flajolet’s home page (2007)

12. INRIA. Coq, version 8.1 (November 2006), http://coq.inria.fr/
13. Koopman, P.W.M., Alimarine, A., Tretmans, J., Plasmeijer, M.J.: Gast: Generic

automated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

http://coq.inria.fr/

Bounded Relational Analysis of Free Data Types

Andriy Dunets, Gerhard Schellhorn, and Wolfgang Reif

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Institut für Informatik,
Universität Augsburg,

86135 Augsburg Germany
{dunets,schellhorn,reif}@informatik.uni-augsburg.de

http://www.informatik.uni-augsburg.de/swt

Abstract. In this paper we report on our first experiences using the rela-
tional analysis provided by the Alloy tool with the theorem prover KIV in
the context of specifications of freely generated data types. The presented
approach aims at improving KIV’s performance on first-order theories.
In theorem proving practice a significant amount of time is spent on un-
successful proof attempts. An automatic method that exhibits counter
examples for unprovable theorems would offer an extremely valuable sup-
port for a proof engineer by saving his time and effort. In practice, such
counterexamples tend to be small, so usually there is no need to search
for big instances. The paper defines a translation from KIV’s recursive
definitions to Alloy, discusses its correctness and gives some examples.

Keywords: First-order logic, theorem proving, SAT checking, abstract
data types, model checking, verification, formal methods.

1 Introduction

In our work we present an integration of an automatic procedure for finding finite
counter examples or witnesses for first-order theories in the theorem prover KIV
[4]. KIV supports both functional and state-based approaches to model systems.
In this paper, we concern ourselves with the functional approach, which uses
hierarchically structured higher-order algebraic specifications. More precisely,
we are interested in the automation of its first-order part.

As first-order logic is undecidable we can construct either a decision proce-
dure for decidable fragments or use an automated prover for full logic. Both
approaches are useful for provable goals.

Since most of the time in interactive theorem proving is spent to find out
why certain goals are not provable, an alternative approach is to try to disprove
conjectures and to generate counter examples. Therefore, we were inspired by
the automatic analysis method for first-order relational logic with transitive
closure implemented in the Alloy Analyzer [10] and its successful application in
the Mondex challenge by Ramananandro [15]. Alloy’s algorithm handles the full
first-order relational logic with quantifiers and transitive closure [11].

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 99–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 A. Dunets, G. Schellhorn, and W. Reif

Because formal theories in KIV are constructed using structured algebraic
specifications, the sought-after automatic procedure involving Alloy Analyzer
would represent a relational analysis of algebraic data types. A fundamental
work on this topic was done by Kuncak and Jackson [12]. They present a method
for the satisfiability checking of first-order formulas which is based on finite
model finding, formulate essential properties which should be satisfied by an an-
alyzed data structure and identify a class of the amenable formulas. A reduction
from reasoning about infinite structures to reasoning about finite structures was
achieved for a minimal theory consisting of selectors only.

In this paper we elaborate the results in [12] by extending the considered
language from just selector functions to constructors and recursive functions as
they usually occur in first-order theories. We apply these results to universally
closed formulas in the KIV theorem prover. As a first step in this direction, the
approach presented in this paper is confined to the analysis of recursive defini-
tions over free data types1, e.g. lists, stacks, binary trees. In our experiments we
used Alloy Analyzer version 4.0 [10].

1.1 Related Work

There are different approaches of combining interactive methods with automated
ones, which have in common the aim to strengthen interactive proving tools by
adding automatic methods. One approach is to use automated theorem provers
based on resolution or other calculi as a tactic in KIV to prove first-order theo-
rems. A fundamental investigation of a conceptual integration that goes beyond
a loose coupling of two proof systems was performed in [1] and some improve-
ments on exploiting the structure of algebraic theories were presented in [16]. In
[13] an automation procedure for a theorem prover is described which bridges
numerous differences between Isabelle with its higher-order logic and resolution
provers Vampire and SPASS (restricted first-order, untyped, clause form). In [7]
a proof certification using theorem prover Isabelle/HOL for a decision procedure
for the quantifier-free first-order logic in SMT-solver haRVey is described. The
theorem prover is used to guarantee soundness of automatically produced proofs,
while the automated tool is used as an oracle.

Nevertheless automated theorem provers are of limited use, since they do
not support induction necessary to reason about algebraic types and recursive
definitions. They are also applicable only for provable theorems, while most of
the time in interactive theorem proving is spent on unsuccessful proof attempts.

For many applications knowing a counter model to a wrong assumption is
as useful as knowing that a conjecture is true itself. This idea is realized in [6],
where a proof procedure based on finite model finding techniques is designed for
first-order logic. Reversely, [14] presents a so-called small model theorem, which
calculates a threshold size for data types. If no counter examples are found at
the threshold, the theorem guarantees that increasing the scope still produces
no counter examples.

1 Syntactically different terms built up from the constructors denote different values.

Bounded Relational Analysis of Free Data Types 101

1.2 Outline

We provide some background on the theorem prover KIV and the specification
of algebraic data types in Section 2. Section 3 gives a short overview of the
Alloy Analyzer tool, the logic it uses and the analysis. Section 4 introduces in
generating models for free data types in Alloy. Section 5, which is the central
one, provides a detailed insight into an axiomatization of recursive functions for
finite models in Alloy. In Section 6 we report on our first experiences from an
application in KIV for an example, that has been analyzed earlier using KIV’s
own counter example generation. This is followed by conclusions and an outlook
in Section 7. Throughout this work we use lists as a representative example of
free algebraic data types.

2 Theorem Prover KIV

KIV is a tool for formal system development. It provides a strong proof support
for all validation and verification tasks and is capable of handling large-scale
theories by efficient proof techniques and an ergonomic user interface. Details
on KIV can be found in [4,5].

2.1 Specification of Algebraic Data Types

The basic logic underlying the KIV system combines Higher-Order Logic (HOL)
and Dynamic Logic (DL) [8], which allows to reason over imperative programs
(partial and total correctness as well as program equivalence are expressible).

In this work we are particularly interested in the FOL part of the KIV system.
The reason is, that in almost all proof tasks carried out interactively in KIV,
whether in the basic logic or in extensions for temporal logic proofs [2], ASM
specifications [19], statecharts [21,3] or Java program proofs [20], eventually a lot
of first-order proof obligations arise. These are typically discharged using simpli-
fier rules. Most simplifier rules are first-order lemmas which are automatically
used for rewriting and other simplifications. In large case studies the number of
used rewrite rules is often several thousands, many of them imported from the
KIV library of data types.

Defining and proving such simplifier rules is therefore a regular task in in-
teractive verification. Usually, some of these theorems are wrong on the first
attempt, so a quick check that identifies unprovable ones is very helpful.

A theory in KIV describes data types, e.g. naturals, lists, arrays or records,
which afterwards are used in DL programs. Theories are specified using struc-
tured algebraic specifications. To specify data structures adequately, in addition
to first-order axioms we also need axioms for induction. Unfortunately an induc-
tion scheme cannot be specified by a finite set of first-order formulas. As a re-
placement generation clauses are used: s generated by c1, . . . , cn, where s is a

102 A. Dunets, G. Schellhorn, and W. Reif

generic data specification
parameter elem
list = [] | . + . (. .first : elem; . .rest : list);
variables

x, y, z : list;
order predicates . < . : list x list;

end generic data specification

enrich list with
functions

. + . : list x list -> list;
rev : list -> list;

axioms
app-nil : [] + x = x;
app-cons : (a + x) + y = a + (x + y);
rev-nil : rev([]) = [];
rev-cons : rev(a + x) = rev(x) + (a + []);

end enrich

Fig. 1. KIV specification of lists

sort, and c1, . . . , cn are its constructors. The simplest example of a generated
sort are natural numbers: nat generated by 0, +1.

A basic specification consists of three parts: a description of the signature,
the axioms and the principles of induction. Figure 1 shows the specification
of lists in KIV. It contains a basic specification of the sort elem (not shown),
a generic data specification of lists and finally an enrichment of the list data
specification by recursive functions app and rev. Line list = [] | . . . generates
four axioms specifying the free data type list. The first axiom is generated
by clause which declares that the sort is generated by its constructors: list
generated by [],+. From freeness the following axioms are generated. selector
axioms: (a+x).f irst = a, (a+x).rest = x, uniqueness of constructors: a+x �= []
and injectivity of constructors: a + x = b + x ↔ a = b ∧ x = y.

For free data types, axioms for the order predicate <, which corresponds to
the subterm relation, are automatically included in the theory. In the enrichment
we specify two recursive functions rev and app (overloaded + for append). These
are defined by structural recursion over the first argument of a function.

3 Alloy Analyzer

In this section we introduce a logic which underlies this work. This logic is also
used as an intermediate language to which Alloy input is translated and which
is also handled by the Alloy algorithm. Although the logic is multi-sorted, for
the sake of a better illustration we consider only two sorts: elem and list. In the

Bounded Relational Analysis of Free Data Types 103

sort ::= list | elem

F ::= A | ∀x ∈ sort. F | ∃x ∈ sort. F | F1 ∧ F2 | ¬F1

A ::= (x1, . . . , xn) ∈ Rn | x1 = x2

Rn ::= rn, n �= 2

R2 ::= ∧R2
1 | r2

M = (L, E, γ), α : V ars → L ∪ E

[[∀ x∈list. F]]M,α ≡ ∀ l ∈ L. [[F]]M,α′
, α′ = α[x := l]

[[∃ x∈list. F]]M,α ≡ ∃ l ∈ L. [[F]]M,α′
, α′ = α[x := l]

[[∀ x∈elem. F]]M,α ≡ ∀ e ∈ E. [[F]]M,α′
, α′ = α[x := o]

[[∃ x∈elem. F]]M,α ≡ ∃ e ∈ E. [[F]]M,α′
, α′ = α[x := o]

[[F1 ∧ F2]]
M,α ≡ [[F1]]

M,α ∧ [[F2]]
M,α

[[¬F1]]
M,α ≡ ¬[[F1]]

M,α

[[(x1, . . . , xn) ∈ Rn]]M,α ≡ (α(x1), . . . , α(xn)) ∈ [[Rn]]M,α

[[∧R2]]
M,α ≡ {(x1, x2) | ∃n ≥ 1. ∃l1, . . . , ln ∈ L.

n�

i=1

(li−1, li) ∈ [[R2]]
M,α}

[[rn]]M,α ≡ γ(rn)

Fig. 2. Syntax and Semantics for Relational Logic with Transitive Closure [11]

next section we will discuss an axiomatization of free data types in this logic,
where we will use the specification of lists as a generic example.

3.1 Logic

The logic used by the Alloy analyzer is a first-order relational logic with transitive
closure [11]. Figure 2 shows its syntax and semantics. The input language of Alloy
has a very rich syntax, but here we stick only to the most essential part.

We consider two sorts: lists and elements. Formulas F can be constructed using
universal as well as existential quantifiers. Atomic formulas A are defined using ∈
operator on variables x1, . . . , xn for a n-ary relation Rn and using equality opera-
tor. Relation-valued expressions Rn are introduced using terminal symbols rn. In
case of binary relations R2 a transitive closure operator can be applied: ∧R2.

Other types of atomic formulas like Rn
1 ⊆ Rn

2 or Rn
1 = Rn

2 are provided by
the Alloy’s syntax which can be derived from the basic ones:

setOp ::= ∪ | ∩ | \
A ::= Rn

1 ⊆ Rn
2 | Rn

1 = Rn
2

Rn ::= Rn
1 setOp Rn

2 | Rk
1 .Rk′

2 , where k + k′ − 1 = n

104 A. Dunets, G. Schellhorn, and W. Reif

where

Rn
1 ⊆ Rn

2 ≡ ∀x̄. x̄ ∈ Rn
1 → x̄ ∈ Rn

2

Rn
1 = Rn

2 ≡ Rn
1 ⊆ Rn

2 ∧ Rn
2 ⊆ Rn

1

(x1, . . . , xk+k′−1) ∈ Rk
1 .Rk′

2 ≡ ∃y. (x1, . . . , xk−1, y) ∈ Rk
1

∧ (y, xk, . . . , xk+k′−1) ∈ Rk′

2

This logic has a standard semantics of multisorted logic. Formulas of the logic
are interpreted over structures M = (L, E, γ), where L and E represent disjoint
domains of both sorts list and elem. Function γ interprets relational symbols
rn by mapping them on the relations between individual atoms of M , e.g. for a
binary relational symbol first ⊆ list × elem the corresponding mapping would
be γ(first) ⊆ L × E. Further, a valuation function α : V ars → L ∪ E assigns
values from M to free variables xi of an evaluated formula. A generic definition
of [[ϕ]]M,α for a given structure M and a valuation α is shown in Figure 2. For a
given structure M and a formula ϕ we call M model of ϕ iff [[ϕ]]M,α is true for
any valuation α, i.e. M |= ϕ. Similarly, we define M |= {ϕ1, . . . , ϕn} iff M |= ϕi

holds for each ϕi.

3.2 Model Finding

Alloy implements a fully automatic analysis for a relational logic and is an effi-
cient model finder. By defining a signature and a set of axioms Φax we specify
the analyzed system. For a formula ϕ and a given scope r (upper bound on
the size of the domains) Alloy searches for models M satisfying axioms Φax but
violating the property ϕ, i.e. M |= Φax ∪ {¬ϕ}.

We utilize this capability to search for structures M = (E, L, γ) which repre-
sent finite cutouts from infinite term algebras. We recall, that analyzed formulas
are normalized to Q1v1 :: s1. . . . Qnvn :: sn. ψ where ψ is a quantifier-free for-
mula with free variables v1, . . . , vn. In the case of a successful search, Alloy
identifies a finite structure M and a valuation α0 for the specified scope r such
that ¬[[ψ]]M,α0 . For example, for a universal formula ∀x, y :: list. x = y and the
scope r ≥ 2 Alloy would identify M with L containing at least two different
atoms l0, l1 such that ¬[[x = y]]M,α[x:=l0,y:=l1]. A detailed demonstration using a
more sophisticated example is given in Section 6, where an implementation of
interval lists does not satisfy an invariant.

3.3 Translation of KIV Formulas to Relational Form

Since Alloy is based on relational logic, KIV specifications involving functions
have to be translated to specifications using relations. Therefore, as a first step
we map each function symbol f to the corresponding relation (predicate) F :

f : s → s′ � F : s × s′

Bounded Relational Analysis of Free Data Types 105

The basic idea is that the relation F encodes the graph of the function f :

[[f]](a1, . . . , an) = b ⇔ [[F]](a1, . . . , a1, b) (1)

where [[f]] is the semantics of f in a model of the KIV specification and [[F]] is
the semantics of F in the corresponding model of the translated specification.

To achieve this we need two axioms for every function, that state that F is
the translation result of a total function, namely the uniqueness axiom:

∀x1, . . . , xn, y, z. F (x1, . . . , xn, y) ∧ F (x1, . . . , xn, z) → y = z (2)

and the totality axiom:

∀x1, . . . , xn. ∃y. F (x1, . . . , xn, y) (3)

We also need to translate the axioms of KIV to axioms over relations. This can be
done schematically, the main idea is to introduce auxiliary variables for all inter-
mediate results and to finally replace f(x1, . . . , xn) = y by F (x1, . . . , xn, y). We
give a formal definition which assumes that each axiom ϕ has been normalized
to have all quantifiers in front of the formula (prenex normal form):

ϕ ≡ Q1v1 :: s1. . . . Qnvn :: sn. ψ, (4)

where ψ is a quantifier-free formula with free variables v1, . . . , vn.
The restriction to prenex normal form is not really necessary, but avoids

a discussion about a suitable renaming of bound variables and occurrences of
terms. As an example, consider a formula ϕ from the specification of lists in
KIV:

ϕ ≡ ∀x, y :: list. rev(x + y) = rev(y) + rev(x) (5)

Its quantifier-free subformula ψ contains the function symbols rev and + (for
the append function). Therefore the translated axiom will use predicates REV :
list × list for rev and APP : list × list × list for +.

To define the translation, we need two sets of terms: the set of “top-level”
terms Ttop, which consist of all terms ti that occur in equations ti = tj or pred-
icates P (t1, . . . tn) of ψ and which are not just variables. In our example Ttop ≡
{rev(x + y), rev(y) + rev(x)}. Second we need the set Tall of all non-variable
subterms of terms in Ttop. For our example Tall ≡ Ttop ∪{x+ y, rev(y), rev(x)}.

Based on these two sets the translated formula τ(ϕ) of an axiom ϕ is then
defined as follows:

Definition 1 (Relational form)
Given a mapping ϑ : Tall → V ars that generates fresh variables for terms in
Tall and a functional formula ϕ in KIV of the form given in (4). We construct
its relational counterpart τ(ϕ) for Alloy:

τ(ϕ) ≡ Q1v1 :: s1. . . . Qnvn :: sn. ∀ ϑ(Tall).
∧

f(t1,...,tk)∈Tall

(ϑ(t1), . . . , ϑ(tk), ϑ(f(t1, . . . , tk))) ∈ F → ψ[Ttop�ϑ(Ttop)]

106 A. Dunets, G. Schellhorn, and W. Reif

where ψ[Ttop�ϑ(Ttop)] is ψ with terms from Ttop substituted by corresponding
fresh variables ϑ(Ttop).

To continue with our example above, we compute τ(ϕ) for (5):

τ(ϕ) ≡
∀x, y :: list. ∀z1, z2, z3, z4, z5 :: list. (z3, z1) ∈ REV ∧ (z4, z5, z2) ∈ APP

∧ (x, y, z3) ∈ APP ∧ (y, z4) ∈ REV ∧ (x, z5) ∈ REV → z1 = z2

It is easy to prove (by induction on the complexity of terms and formulas)
that the syntactical transformation τ preserves the meaning of formulas in the
following sense: for each model of the original formula ϕ, the corresponding
relational model (where the semantics of F is defined via (1)) satisfies τ(ϕ).
Similarly, for each model of τ(ϕ), that also satisfies the axioms Totality and
Uniqueness, a model of the original signature can be constructed such that ϕ
and (1) hold. The transformation has linear complexity with respect to the size
of a formula.

4 Generating Models of Free Data Types in Alloy

The semantics of free data types is defined on algebraic structures called term
algebras which represent concrete models of specifications. In term algebras car-
rier sets are composed of inductively generated terms. Terms are generated using
constructor operations (functions), e.g. the constant nil and the function cons :
elem × list → list for lists.

Here we refer to the work of Kuncak and Jackson [12]. We adopt their ideas
to generate term algebras in Alloy. We have to specify corresponding structures
M = (E, L, γ), where E and L represent domains and γ interprets relational
symbols rn over E and L. Again we are using lists as a generic example of a free
data type.

In Alloy new sorts (types of atoms) are introduced by the keyword sig. We
specify two new sorts: elem and list, see Figure 3. Using the keyword extends
we split the set of atoms of type list in two disjunctive subsets: the singleton set
nil (defined to have exactly one atom, keyword one) and the set cons which can
have an arbitrary number of atoms within specified bounds. Atoms of type cons
represent results of the constructor function cons : elem × list → list and are
always connected over selector relations first and rest with atoms from which
they are constructed. On the right side in Figure 3 the generated metamodel of
the signature is shown.

In the next step we specify axioms in Alloy which restrict relations first and
rest to behave properly in M . The following four axioms (SUGA) are necessary,
see Figure 4. SUGA axioms generate infinite structures M which contain an iso-
morphic copy of the term model M∞ = (E, L, γ). Here the language is restricted
only to selector functions first and rest.

Bounded Relational Analysis of Free Data Types 107

module list

sig elem {}
sig list {}

one sig nil extends list {}
sig cons extends list {

first : elem,
rest : list

}

Fig. 3. Metamodel of lists in Alloy

selectors: ∀l : list. l �= nil → ∃! l′ : list, e : elem. l.rest = l′ ∧ l.first = e

∀l : list, e : elem. (nil, e) �∈ rest ∧ (nil, l) �∈ first

uniqueness: ∀l, l′ : list. l.first = l′.first ∧ l.rest = l′.rest → l = l′

generator: ∀l′ : list, e : elem. ∃l : list. l.first = e ∧ l.rest = l′

acyclicity: ∀l : list. (l, l) �∈ r̂est

Fig. 4. SUGA axioms

The infiniteness of M∞ prevents it to be constructed by Alloy. A possible
solution to this problem is to omit the generator axiom (SUA axioms). This
results in producing finite models M0 which represent specific parts of original
infinite structure M∞, so-called subterm-closed models, i.e. models closed under
transitive closure of selector relation rest, see Figure 5.

[12] establishes a finite satisfiability result by proving that for a specific class
of formulas2 (existential - bounded universal, EBU) satisfiability can be checked
on finite models of SUA axioms (axioms without generator). For this purpose
a notion of bounded quantification is introduced, see [12]. Roughly, if a witness
for an EBU formula is found in a finite model M0, we can pick the same witness
in the infinite model M∞. So a semi-decision procedure involving Alloy can be
constructed that checks satisfiability of these formulas.

Unfortunately, we found that these encouraging results apply to theories only,
where just selector functions are present in formulas. In order to use it in practice
we have to cope with several difficulties. In the next section we will discuss what
we have done to incorporate recursively defined functions in the method and
what implications can possibly emerge.
2 e.g., formula ∀x :: list. ∃y :: list. (x, x, y) ∈ APP contains unbounded quantification

and has no finite models.

108 A. Dunets, G. Schellhorn, and W. Reif

rest

nila b

[a] [b]

[a,b] [b,b]

restrest

rest

Fig. 5. Finite subterm-closed substructure M0 of infinite structure M∞ (2 elem and 5
list atoms). Relation first is omitted for reasons of clearness.

5 Axiomatization of Recursive Functions

We would like to extend our language containing just selector relational symbols
{first,rest} to the complete language with recursive functions that we use in KIV.
Such recursive definitions have the following form:

Definition 2 (KIV axioms for recursion). To define a function f : s1×· · ·×
sk → s1 by structural recursion over the first argument, axioms of the following
form are used:

∀u, v. ψi → f(ci(u), v) = Ψi(f, u, v)

where each ci is one of the constructors for the sort s1, each Ψi is a term that
contains invocations of f with the first argument u. The cases ψi for one of the
constructors c form a complete case distinction, i.e. the disjunction of all ψi,
where ci = c is true.

As a first step we translate the signature. Both the constructors and the recur-
sive definitions have to be defined. For the constructor function cons we add a
predicate definition in Alloy:

pred cons [e: elem, l: list, c: list] { c.first = e and c.rest = l }

Recursive functions like APP and REV are added to the list signature and
thus declared as relations between the corresponding sorts:

sig list {
app: list -> lone list,
rev: lone list

}

By the keyword lone we tell Alloy that a relation satisfies the uniqueness axiom
(2) of the relational translation, i.e. that there is at most one result for append
and reverse. The totality axiom (3) would be satisfied too by using the key-
word one instead of lone, but assuming totality of reverse or append prevents

Bounded Relational Analysis of Free Data Types 109

finite models. Therefore we drop this axiom, just like the generator axiom for
constructors.

As a second step we have to add appropriate axioms as facts to the Alloy
specification that are translated from the axioms of the KIV specification from
Figure 1. A simple idea would be to translate axioms directly (using τ) but this
yields too weak axioms. Therefore we first combine the axioms for each function
into one axiom. The resulting axioms for reverse and append are

app(x, y) = z ↔ x = [] ∧ z = y ∨ ∃ a0, x0. x = a0 + x0 ∧ z = a0 + app(x0, y)
rev(x) = y ↔ x = [] ∧ y = [] ∨ ∃ a0, x0. x = a0 + x0 ∧ y = rev(x0) + a0

Although the translation is schematic, it exploits uniqueness and totality. We
then translate the resulting axioms to relations. For reverse we get:

∀x, y :: list. (x, y) ∈ REV ↔ (x ∈ NIL ∧ y = x ∨
∃a :: elem, z, z1, z2, z3 :: list. (a, z1, x) ∈ CONS

∧ (z1, z) ∈ REV ∧ z2 ∈ NIL ∧ (a, z2, z3) ∈ CONS

∧ (z, z3, y) ∈ APP)

(6)

The translated formula is stronger than what we would get by translating the
original axioms: these only would give the implication from right to left of (6).
The other direction would have to be inferred using the uniqueness and totality
axioms. For the equivalence we do not need uniqueness and totality any more,
since it is an instance of the well-founded recursion theorem:

Theorem 1 (Well-founded recursion). Given a specification that is enriched
with a new function g defined by the single axiom

g(v) = Ψ(g, v)

where all arguments of recursive calls to g in Ψ are smaller than v with respect
to a well-founded order <. Then for each model M of the original specification
the enrichment defines exactly one function g.

A formal proof of this theorem, which views Ψ as a higher-order function, can be
found in [9]. For our case g is the relation (= boolean function) F . The theorem
implies that just translating the equivalence already fixes exactly one relation
F . Since the relational translation, when adding uniqueness and totality gives
the relation F that is equal to the graph of f , the translated axiom alone must
already specify the correct F .

The well-founded recursion theorem is applicable not only for the term models
but also for the finite models that Alloy constructs, since the restriction of the
well-founded subterm relation to finite models is obviously well-founded again.
It is also applicable for the original recursive definitions in KIV.

Together we have: the recursive definitions of KIV extend the term model by a
unique function f . The relational transformation also gives a unique extension of

110 A. Dunets, G. Schellhorn, and W. Reif

the term model M∞ by a relation F , which is the graph of f . For a finite subterm-
closed model M0 we get a unique function F0 using the translated axiom for f
too.

The critical question now is: does F0 in M0 satisfy the same theorems as
F in M∞? We will give a positive answer below for a class of formulas with
universal and bounded existential quantification similar to [12]. The answer has
the precondition, that function F, when restricted to the model M0 (written
F |M0 in the following) is equal to F0. In all the examples that we have checked
we found that F | M0 ⊆ F0, and it remains as an open question whether this
holds in general. In most examples even F | M0 = F0 holds, APP being one
positive example. Nevertheless, we found examples, where F | M0 is a proper
subset of F0. REV is one instance of the problem:

Example 1. Consider the subterm-closed model M0 with L0 = {[], [a], [c], [b, c],
[b, a], [a, b, c], [c, b, a]}. In this model the atoms [a, b, c] and [c, b, a] are not con-
nected by the relation REV0, even though in the infinite model REV ([a, b, c],
[c, b, a]) holds. The reason is that the intermediate result of reversing [b, c], the
list [c, b] (stored as z in axiom (6)) is not in L0.

The general problem is that subterm-closedness does not guarantee, that the
model is closed against chains of results computed by recursive invocations of
the defined function. In the example, this chain of results for [a, b, c] is: rev([]),
rev([c]), rev([b, c]), rev([a, b, c]), since rev([a, b, c]) calls rev([b, c]) etc.. There is
no problem if all results of this chain beyond a certain point are not in the finite
model, the problem appears only, if the result of one call (here: rev([b, c]) is
not in the model, but the result of the next (here: rev([a, b, c])) is again in the
model. Therefore we have to find a constraint, that rules out such models. We
must make sure that with the result of rev([a, b, c]) = [c, b, a] being in the model,
the previous result rev([b, c]) = [c, b] is in the model too.

A constraint that guarantees this, is that the model is prefix-closed:

∀y :: list. y ∈ NIL ∨ ∃z3, z4, z5 :: list. z4 ∈ NIL ∧ (a, z4, z5) ∈ CONS

∧ (z3, z5, y) ∈ APP

It seems that this constraint can be derived for surjective functions in general,
where we know that any element of the model is a result of the function. The
constraint then says that each y (a result of f) must be computable from the
results z1, . . . zn of recursive calls. For a recursive definition of F of the form

F (x, y) ↔ Ψ(F (t1, u1), F (t2, u2), . . . , F (tn, un), x, y)

the constraint for constructing a result from the previous call therefore is

∀y, x. ∃z1, . . . zn. Ψ(u1 = z1, u2 = z2, . . . , un = zn, x)

The constraint works for reverse and gives the constraint (7) after simplifica-
tion. The definition of append function gives the trivial constraint of subterm-
closedness which is fortunately already satisfied by SUA models. For functions

Bounded Relational Analysis of Free Data Types 111

which are not surjective, the constraint would have to quantify only over all y
in the image of f , but this is not possible, since the only way to characterize the
image is again via the recursion. An example which shows the problem is

Example 2. Consider the non-surjective function palindrome with axioms

pal([]) = [], pal(a + x) = a + (pal(x) + (a + []))

Obviously not all atoms are results of pal. The solution above states that any
atom being the result of f can be deconstructed according to the axiomatization
of f . But in case of pal function for some atoms there are no such deconstruction,
Alloy would not be able generate any model. The fundamental problem about
this is that we don’t know (cannot formulate in the “deconstruction”-axiom)
ahead whether some atom is an image of f or not.

Assuming that for all F the equation F |M0 = F0 holds, we can get a similar
result as in [12], using the following class of formulas:

Definition 3 (Bounded quantifiers and UBE formulas). A bounded ex-
istential quantifier is of the form ∃v :: s. v < t → ψ, where t is an arbitrary
term and < is a subterm order3. An UBE formula uses universal and bounded
existential quantifiers.

[12] defines EBU formulas, since they are interested in satisfiability, while we
define their negation, since we are interested in counterexamples. Their bounded
quantification allows v ∈ S with an arbitrary set S instead of v < t, which at
first glance looks much more liberal. In fact it is not, since the symbols available
to describe a set S are selectors and nothing else. Since selectors can describe
subterms of existing terms only, subterm-closedness is then enough to ensure
the existence of witnesses. As soon as we allow other functions, the more general
form fails to work in the following theorem.

Theorem 2 (Finite refutation). Let ϕ be an UBE formula in KIV, τ(ϕ) its
transformation to Alloy and M∞ the term algebra for the KIV theory translated
to use relations. Let M0 be a finite subterm-closed substructure of M∞, which
also preserves all relations F from M∞ i.e. F |M0 = F0. Further, let M0 � τ(ϕ).
Then M∞ � τ(ϕ).

The proof of this theorem is exactly like Kuncak’s proof by induction over the
structure of a formula. It allows to find counter examples for UBE formulas,
by incrementally constructing finite models. To be complete, we would have to
increase the bound indefinitely, but for practical purposes the search can be
stopped as soon as it either finds a counter example or takes too long.

6 Experimental Results

We applied our technique to most representative examples in KIV. As an au-
tomatic translator to Alloy input language is not yet implemented, we used
manually compiled Alloy models.
3 Always provided for free data types in KIV.

112 A. Dunets, G. Schellhorn, and W. Reif

Fig. 6. Counter example generated by Alloy

6.1 Example: Lists of Intervals

As a nice nontrivial example we considered an implementation of sets of nat-
ural numbers by intervallists, that was used in [17] to demonstrate algebraic
refinement via modules in KIV. The example has also been analyzed previously
using KIV’s own counter example generation mechanism described in [18]. We
first describe the example, the results we got with Alloy and then give a short
comparison of the results with KIV.

Sets of natural numbers can be implemented as lists of intervals, where an
interval is simply a pair of numbers. For example the set {0, 1, 2, 4, 5, 7} can
be represented by the list of intervals [(0, 2), (4, 5), (7, 7)] in a unique way. A
typical application is the list of free blocks of dynamically allocated memory. A
predicate R defines well-formed lists, e.g. R([(0, 2)]) = true, R([(2, 0)]) = false,
R([(0, 1), (1, 2)]) = false. Further, an insert function is specified, which adds a

Bounded Relational Analysis of Free Data Types 113

number into a list of intervals. A correct specification of insert operation must
satisfy following invariant:

∀ ivl1, ivl2 ∈ intervallist, n ∈ nat. R(ivl1) ∧ ivl2 = insert(ivl1, n) → R(ivl2)

The original specification contained a bug in the definition of insert function:
it failed to merge [, n] and [n + 1,] into one interval when n + 1 was inserted.
As Table 1 shows, using our technique Alloy was able to identify the smallest
counter example at the scope4 of 4 in 2 seconds.

Table 1. Benchmark (berkmin SAT solver, 2.4 GHz Dual Core)

scope (model size) counter example clauses time

1 no 2000 0.1 s
2 no 5000 0.3 s
3 no 13252 0.7 s
4 yes 83302 2 s

The invariant was violated for ivl1 = [(0, 0), (2, 3)], ivl2 = [(0, 1), (2, 3)] and
n = 1. This instantiation can be read off from the model generated by Alloy,
that is shown in Figure 6. It depicts a finite structure M0 = (I0, L0, N0, γ)
with atoms of sorts interval, list and nat together with corresponding relations
between them. Alloy labels with marks $ivl, $ivl′, $n those atoms which violate
invariant, i.e. Cons1, Cons2 and Succ2. By tracing back constructor relations
we rebuild corresponding terms and therewith identify values of ivl1, ivl2 and n.

The same example was tried using KIV’s counter example generation. This
roughly works as follows: first a proof attempt for (7) is done. Using heuristics
KIV automatically creates a proof tree in 4 seconds, ending in an open goal.
The user then has to analyze this goal and to decide, either that it is unprovable
or which proof step to be apply next. In this case, the user will suspect rather
soon, that it is unprovable and invoke counter example generation. This proof
strategy exploits the fact, that constructing a counter example basically means
to instantiate all variables x in the goal by constructor terms. Therefore it does
a systematic search by instantiating all variables with all constructor terms and
by applying rewrite rules. For the goal at hand the search stops after two seconds
with an empty sequent, which is definitely unprovable (in unsuccessful cases the
search does not terminate, and the user has to abort manually). KIV will then
compute a counter example for the original goal, by examining the proof tree
(the effort for doing this is negligible). For our goal the counter example will
be ivl1 = [(0, 1), (1, m)] with arbitrary m. The successful application critically
depends on heuristics and that suitable rewrite rules have been designed. In
summary, the 2 seconds that Alloy needs are a clear improvement compared to
the 6 seconds + user analysis of a goal.
4 Defines maximal number of atoms for each sort. The smallest counter example which

is presented here needs at least 4 atoms of the list sort, i.e. [], [(2, 3)], [(0, 0), (2, 3)]
and [(0, 1), (2, 3)].

114 A. Dunets, G. Schellhorn, and W. Reif

7 Conclusion

We have presented an automatic method which can be applied to a wide class
of first-order logic formulas. We aim to integrate it into the theorem prover
KIV. The method is restricted to universal-bounded existential sentences. The
question whether a formula is amenable to the analysis can be answered by a
simple syntactic check. This limitation is not a big drawback in our opinion as
from our own experience non-UBE formulas are rather rare.

This work was our first experiment with Alloy tool and we achieved very
promising results. Naturally, there are open issues. The main open question that
remains is: when does the relation F0 agree with F |M0? It seems that in a large
number of cases it does, but we have not found a syntactic characterization
of this class yet. Another assumption, that is too strong is that all functions
are defined recursively. In practice it is also common to specify functions non-
recursively using quantified formulas: e.g. a predicate ∈ : elem × list can be
specified as a ∈ x ↔ ∃y, z. y + a + z = x.

The translation to Alloy language was done manually and we have to automate
it. A new more powerful tool based on Alloy called Kodkod [22] has become
available recently. It is implemented as an API rather than as a standalone
application and can easily be incorporated as a backend of another tool. We
plan to use it for more seamless integration in KIV’s graphical user interface
and better proof visualization. We also intend to investigate an extension of the
method to non-freely generated data types (like arrays or sets).

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G.,
Schmitt, P.: Integrating Automated and Interactive Theorem Proving. In: Bibel,
W., Schmitt, P. (eds.) Automated Deduction – A Basis for Applications. Systems
and Implementation Techniques, Interactive Theorem Proving, vol. II, Kluwer Aca-
demic Publishers, Dordrecht (1998)

2. Balser, M.: Verifying Concurrent Systems with Symbolic Execution. PhD thesis,
Universität Augsburg, Fakultät für Informatik (2005)

3. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification
of UML state machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM
2004. LNCS, vol. 3308, pp. 434–448. Springer, Heidelberg (2004)

4. Balser, M., Reif, W., Schellhorn, G., Stenzel, K.: KIV 3.0 for Provably Correct
Systems. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641,
Springer, Heidelberg (1999)

5. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system de-
velopment with KIV. In: Maibaum, T.S.E. (ed.) FASE 2000. LNCS, vol. 1783, pp.
363–366. Springer, Heidelberg (2000)

6. de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite
model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

Bounded Relational Analysis of Free Data Types 115

7. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + au-
tomation + soundness: Towards combining SMT solvers and interactive proof as-
sistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
167–181. Springer, Heidelberg (2006)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
9. Harrison, J.: Inductive definitions: Automation and application. In: TPHOLs, pp.

200–213 (1995)
10. The Alloy Project, http://alloy.mit.edu
11. Jackson, D.: Automating first-order relational logic. In: SIGSOFT 2000/FSE-8:

Proceedings of the 8th ACM SIGSOFT international symposium on Foundations
of software engineering, pp. 130–139. ACM Press, New York (2000)

12. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2005)

13. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First pro-
totype. Inf. Comput. 204(10), 1575–1596 (2006)

14. Momtahan, L.: Towards a small model theorem for data independent systems in
alloy. Electr. Notes Theor. Comput. Sci. 128(6), 37–52 (2005)

15. Ramananandro, T.: Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Aspects of Computing 20(1),
21–39 (2008)

16. Reif, W., Schellhorn, G.: Theorem Proving in Large Theories. In: Bibel, W.,
Schmitt, P. (eds.) Automated Deduction—A Basis for Applications, vol. III, 2,
Kluwer Academic Publishers, Dordrecht (1998)

17. Reif, W., Schellhorn, G., Stenzel, K.: Interactive Correctness Proofs for Software
Modules Using KIV. In: COMPASS 1995 – Tenth Annual Conference on Computer
Assurance, IEEE press, Los Alamitos (1995)

18. Reif, W., Schellhorn, G., Thums, A.: Flaw detection in formal specifications. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 642–657. Springer, Heidelberg (2001)

19. Schellhorn, G.: Verification of Abstract State Machines. PhD thesis, Universität
Ulm, Fakultät für Informatik (1999),
http://www.informatik.uni-augsburg.de/swt/Publications.htm

20. Stenzel, K.: A formally verified calculus for full Java Card. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 491–505. Springer,
Heidelberg (2004)

21. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive verification of state-
charts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder,
E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 355–373. Springer, Hei-
delberg (2004)

22. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

http://alloy.mit.edu
http://www.informatik.uni-augsburg.de/swt/Publications.htm

Static Analysis Via Abstract Interpretation of

the Happens-Before Memory Model

Pietro Ferrara

École Polytechnique
F-91128 Palaiseau, France

Pietro.Ferrara@polytechnique.edu
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
I-30170 Venezia, Italy

Abstract. Memory models define which executions of multithreaded
programs are legal. This paper formalises in a fixpoint form the happens-
before memory model, an over-approximation of the Java one, and it
presents a static analysis using abstract interpretation. Our approach
is completely independent of both the programming language and the
analysed property. It also appears to be a promising framework to define,
compare and statically analyse other memory models.

Keywords: Static Analysis, Abstract Interpretation, Memory Model,
Multithreaded Programs.

1 Introduction

While the improvement of single-core architectures is slowing down, many multi-
core processors, like the family of Intel R© CoreTM, are appearing in a broad
market [10]. The only way to take advantage of this technology is to develop
multithreaded programs that perform many parallel tasks.

The semantics of a programming language supporting multithreading must
be defined well enough that developers can fully understand which behaviours
are allowed during an execution, and which are not. In the literature, a common
approach has been to consider as incorrect all the programs containing data
races [19], i.e. in which two parallel threads access without any synchronisation
action the same area of shared memory, and not to provide any semantics in
this case. In this way, many static analyses have been aimed at proving the
absence of data races [16,20]. Leaving completely unspecified the semantics of
these programs is unsatisfying for modern programming languages, particularly
those that are focused on security issues.

The attention on this topic has increased during the last years: for instance,
the first specification of the Java Virtual Machine [12] was flawed [18], and only a
following work [13] provided a correct definition. Nowadays, the specification of
the memory model appears to be the “lingua franca” that can fill this lack on the
semantics specification. In this context, two main but opposing approaches are

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 116–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Static Analysis Via Abstract Interpretation 117

considered: (i) to restrict the non-deterministic behaviours in order to provide a
simple reference to the developers; (ii) to allow as many compiler optimisations
as possible, but that introduce non-deterministic behaviours.

On this topic, the debate is still in progress [2], and different ideas and solu-
tions have recently been proposed [23].

Most state-of-the-art static analyses do not support multithreading, or they
deal only with the possible interleavings of instructions; this is why they are not
sound w.r.t. the memory model, as it usually allows more behaviours than the
ones exposed by sequentially consistent executions.

Contribution: In this context, a static analyser able to approximate all the
possible runtime behaviours of a multithreaded program w.r.t. a memory model
seems to be particularly appealing, as it would help developers reason about
compiler optimisations and all the possible interleavings due to the parallel exe-
cution of multiple threads [24]. Moreover, since the threads communicate implic-
itly through the shared memory, really subtle and unwanted interactions may
arise, and a static analysis may trace and provide information about all these
potential bugs. Some examples about these situations, like the one depicted by
our running example, are presented by [13].

The happens-before memory model is an over-approximation of the Java one;
for this reason, tuning a static analysis at this level will allow us to obtain sound
results for Java multithreaded programs.

Our approach follows the abstract interpretation framework [4,5]. We first
define the concrete trace semantics in a fixpoint form, aimed at formalising
the happens-before memory model. Then we abstract it, proving the sound-
ness of our analysis. Our analysis is generic to the programming language, as
the happens-before memory model is. Moreover, our framework shall be used
to formalise, compare, and statically analyse other memory models. The pro-
posed analysis approximates all the possible multithreaded behaviours w.r.t.
the happens-before memory model, starting from a given intra-thread domain
and semantics. Our approach allows that the intra-thread semantics follows the
sequential consistency rule (as most static analyses do); the multithreaded ex-
ecutions that are sensitive to compiler optimisations and threads’ interleavings
are obtained through the computation of a fixpoint.

The rest of the paper is organised as follows. In this section we present a
running example. Section 2 introduces the happens-before memory model, and
analyses it from a static analysis point of view. The concrete domain and seman-
tics are defined by Section 3, while Section 4 depicts the abstract ones. Section
5 presents and discusses some related work, and Section 6 concludes.

1.1 The Running Example

The concepts in the rest of the paper are explained in the context of a simple
example.Figure 1 depicts a Java-style program composed of two threads where
variables i and j are shared between them. Supposing that at the beginning

118 P. Ferrara

Thread 1 Thread 2
i=1; if(j==1 && i==0)
j=1; throw new Exception();

Fig. 1. The running example

i and j are both equal to 0, which runtime behaviours are acceptable and consis-
tent w.r.t. the memory model? And in particular: may the exception be thrown?

1.2 Abstract Interpretation

Abstract interpretation is a theory to define and soundly approximate the seman-
tics of a program [4,5]. Roughly, a concrete semantics, aimed at specifying the
runtime properties of interest, is defined; then it is approximated through one or
more steps in order to finally obtain an abstract semantics that is computable,
but still precise enough to capture the property of interest. In particular, the
abstract semantics must be composed of an abstract domain, an abstract trans-
fer function, and a widening operator in order to make the analysis convergent.
Usually, each state of the concrete domain is composed of a set of elements (e.g.
all the possible computational states), that is approximated by an unique trace
in the abstract domain.

In our analysis, the concrete semantics is computed by a fixpoint that produces
the set of all the possible finite executions of a multithreaded program; these
executions respect the happens-before memory model. The abstract semantics
computes, always through a fixpoint, an abstract element that approximates the
concrete semantics. The soundness of the approach has been proved following
the abstract interpretation framework.

2 The Happens-Before Memory Model

In the recent literature, the memory models have been aimed at formalising the
behaviours that are allowed during the execution of a multithreaded program.

The Java Memory Model was presented by [18]. Its formalisation involves
many different components, and all the run-time actions must be committed in
a quite sophisticated way. In the same paper the happens-before memory model
is formalised, as an over-approximation of the Java one, i.e. it allows a larger
number of runtime behaviours. Its formalisation is simpler, and it allows us to
reason in terms of static analysis.

The main components of this model are (we denote some rules with a specific
name that will be used during the formalisation of the model in the fixpoint
form):

– the program order, that, for each thread, totally orders the actions performed
during its execution;

Static Analysis Via Abstract Interpretation 119

– a synchronises-with relation that relates two synchronised actions. For in-
stance, the acquisition of a monitor synchronises-with all the previous re-
leases of the same monitor. Moreover the first action of the execution of a
thread is synchronised-with the action that launched it (rule IN);

– the happens-before order initially introduced by [11]. An action a1 happens-
before another action a2 (rule HB) if (i) a1 appears before a2 in the program
order; (ii) a2 synchronises-with a1; (iii) if you can reach a2 by following
happens-before edges starting from a1 (i.e. the happens-before order is tran-
sitive).

Through the happens-before order, a consistency rule is defined. In particular,
it states that a read r of a variable v is allowed to see a write w on v if: (i) r does
not happens-before w (i.e. a read can not see a write that has to be executed
after it); (ii) there is no write w′ on v that happens-before r and w happens-
before it (i.e. there is not any write on the same variable that has to be executed
between the observed write and the read, overwriting it) (rule OW).

The happens-before memory model says nothing about what is a variable and
its granularity (an object, a field, an array, a primitive value, ...).

2.1 Reasoning Statically

One point is not clear in these definitions: on one hand the definition of the
happens-before consistency appears to be a static rule, but on the other hand the
program order talks about a total order covering all the actions of an execution;
this concept is clearly dynamic. Since our approach is parameterized on the
abstract intra-thread transition relation, we suppose that it approximates this
program order; in this way if a state appears before another one in the trace
produced through this relation, it means that it will always be executed before
it.

About the synchronises-with relation, threads generically synchronise on some
elements (for instance in Java they synchronise on monitors defined on objects),
and the mutual exclusion is guaranteed on them. In this way, they acquire a
synchronisable element, keep it during some actions, and finally release it. In a
static context, we do not know which thread acquires the synchronisable element.
For instance, imagine the multithreaded program of Figure 2.

Thread 1 Thread 2
acquire(o) acquire(o)
var=v1 temp=var
var=v2 release(o)
release(o)

Fig. 2. An example

Which values may thread 2 read? The read action is synchronised on the same
element of both writes in thread 1. It may read the initial value stored in var,

120 P. Ferrara

or v2, but not v1, as its acquisition synchronises-with the release of thread 1, or
vice versa its release is synchronised-with the acquisition of thread 1.

This consideration allows us to conclude that statically a read action is al-
lowed to see all the values written by parallel threads, except the ones that are
overwritten by a successive action and such that all the actions between them
are synchronised at least on an element locked also in the state that is going to
perform the read action. This is a straight consequence of the mutual exclusion
principle.

All these concepts are formalised by the concrete semantics.

2.2 The Running Example

Let us apply these concepts to the running example depicted by section 1.1, and
in particular to state if it is consistent that the exception may be thrown under
the happens-before memory model. To answer this question, we evaluate which
values may be read by the condition of the if statement of thread 2.

First of all, since there are no synchronisation actions, the synchronise-with
order is empty, and all the actions of thread 1 do not happen-before the eval-
uation of the condition. So this instruction is allowed to see the initial value
of variable i equal to zero, and the value written by the second instruction of
thread 2 that assigns 1 to variable j. Therefore, it is consistent to evaluate this
condition to true, and to throw the exception.

For instance, the exception is thrown if the two statements of thread 1 are
switched by the compiler (since they are independent, this is allowed), a single-
core processor executes j=1, and then the control switches to thread 2, in which
the condition of the if evaluates to true .

2.3 Notation

We denote the sets of functions by capital Greek letters, the elements by a single
lower-case letter, and the identifiers of sets always begin with a capital letter.

Concrete and abstract: The concrete sets and elements are denoted as just
defined, while the abstract ones are over-lined; for instance, if S is a concrete
set, the respective abstract set is denoted by S. About the functions, if fun is
the concrete one, its respective abstract version is denoted by fun#.

Trace semantics: Our concrete and abstract semantics are based on partial
finite traces. Roughly, the execution of a thread is represented by a trace of states.
ε denotes the empty trace, while σ0 → σ1 → · · · denotes a trace that begins with
a state σ0 followed by σ1, and then there is an arbitrary number of successive
states, denoted by · · · . Given a transition function →: St ×St �→ {true, false},
with an abuse of notation we denote the fact that → (σ1, σ2) = true by σ1 → σ2.
We denote by St→ the set of blocking states following the transition relation →,
i.e. such that ∀σ1 ∈ St→ : �σ2 ∈ St :→ (σ1, σ2) = true. Finally, let be S a
generic set of elements, we denote by S�+ the set of all the finite traces composed
of elements in S.

Static Analysis Via Abstract Interpretation 121

3 Multithreaded Concrete Semantics

In this section we present the multithreaded concrete semantics. This semantics
is aimed at formalising the happens-before memory model in a fixpoint form; it
is completely parameterized by the concrete operational semantics that defines
the behaviour of intra-thread atomic computational steps, and on some functions
that given a state returns a part of it. In this way we completely separate the
semantics of the language from its memory model.

Since the happens-before memory model refers only to finite executions, we
consider only finite traces. Our multithreaded concrete semantics produces all
the complete executions, i.e. in which the executions of all the threads end with
a blocking state.

3.1 Required Elements

In order to define the happens-before memory model on the concrete semantics
we need some sets and functions that extract information from the states.

For the sets, we denote by TId the set of the threads’ identifiers, by Sh all
the possible shared memories, by Loc the shared memory locations, by Val the
values, by Sync all the shared elements on which a thread can synchronise, and
by St the states that contain the memory and control state of a single thread.
Moreover, as the happens-before memory model talks about the values read and
written on the shared memory, we suppose that the shared memory relates each
location to a value (Sh : Loc �→ Val).

We suppose that a transition function ◦→: St×St �→ {true, false} is provided,
and that it defines the single step behaviours of the computation. We require
that these steps are atomic at thread level, i.e. it is not possible for another
thread to see an intermediate state during a single intra-thread transition.

We also require that the following functions are provided:

– shared : St �→ Sh, given a state it returns the shared memory contained in
it;

– action : St �→ ⊥a ∪({r, w}×Loc×Val), given a state it returns the operation
it is going to perform (reading from or writing on the shared memory), the
shared location on which it operates and eventually the written value, or ⊥a

if it has performed another type of operation;
– synchronised : St �→ ℘(Sync), given a state it returns all the elements of

the memory state on which it is synchronised (for instance the set of all the
monitors previously locked and not yet released); we do not specify what
these elements are, since many different ways of synchronisation exist, and
we are generic with respect to the programming language.

Finally, we require the function set shared : St × Sh → St , that given a state
and a shared memory returns a state equal to the given one but in which the
shared memory is replaced by the given one.

122 P. Ferrara

3.2 Thread Partitioned Concrete Domain

Our concrete domain is aimed at collecting information about the parallel exe-
cution of different threads. In this way we partition the trace of the execution
relating each active thread to the trace of its execution. Moreover, we collect
for each thread the one that has launched it, and the number of the state of its
execution trace that is produced after this operation; for the main thread, that
is launched by the system, we use a special value ⊥Ω. In this way our concrete
domain is composed by two functions, where the second one is just aimed at
maintaining some information on the relations between threads. We collect the
number of the state in order to restrict the execution trace only on the states
successive to the launch of the thread, and so to respect the rule IN.

Ψ : TId → St �+

Ω : TId → ((TId × Integer) ∪ ⊥Ω)

3.3 Single Step Definition

We define a step function that performs a single intra-thread step, consistent
with respect to the happens-before memory model, and returns the set of the
possible states obtained after it.

Definition 1 (step function). Starting from the active thread, a multithreaded
state containing the traces of the executions of all the threads, and an element
of Ω, the step function returns the set of all the possible following states.

In particular if the thread is not going to read from the shared memory, it
computes the step while observing the sequential consistency rule (point (1)).
Otherwise it may: (i) perform the step following the sequential consistency (point
(2a)); (ii) select one visible value following the happens-before consistency and
perform the step injecting this value in the shared memory (point (2b)).

Formally,

step : TId × Ψ × Ω �→ ℘(St)
step (t, f, s) = {σ} where f(t) = σ0 → · · · → σi and
(1) σi

◦→ σ if π1(action(σi)) �= r

(2a) σi
◦→ σ∨ if π1(action(σi)) = r

(2b) ∃v ∈ visible(t, π2(action(σi)), synchronised(σi), f, s(t)) :
σ′ = set shared(σi, shared(σi)[l �→ v]), σ′ ◦→ σ

Definition 2 (visible function). The visible function returns the values that
are visible by the given thread. This set is built up by the values produced by the
thread that launched the one that is reading, restricting it only on the part of the
trace executed after the launch (point (1), rules IN), and the values produced by
other threads (point (2)).

visible : TId × Loc × ℘(Sync) × Ψ × ((TId × Integer) ∪ ⊥Ω) �→ ℘(Val)
visible (t, l, S, f, (t′, i′)) =
(1) = project(l, suffix(f(t′), i′), S)∪
(2) {v : v ∈ project(l, f(t′′), S) : t′′ ∈ dom(f) \ {t, t′}}

Static Analysis Via Abstract Interpretation 123

Definition 3 (suffix function). The suffix function, given a trace and an in-
dex, cuts the trace at the i-th element and returns the suffix of the trace. It
supposes that the given index is between 0 and the length of the trace.

suffix : St �+ × Integer �→ St �+

suffix (σ0 → · · · → σj , i) =
{

σi → · · · → σj if i ≥ 0 ∧ i < j
ε if i = j

Definition 4 (project function). The project function, given a location, a
trace, a set of owned synchronisable elements, and the thread that is currently
analysed, returns the set of visible values following the happens-before consistency
in the given trace.

project : Loc × St �+ × ℘(Sync) �→ ℘(Val)
project (l, σ0 → · · · → σi, S) = {v : ∃j ∈ [0..i] : action(σj) = (w, l, v) ∧

not synchronised(σj → · · · → σi, S)}

The first part of the condition of shj , i.e.,

action(σj) = (w, l, v)

excludes the transitions that do not write on the shared memory, and the second
part, i.e.,

not synchronised(σj → · · · → σi, S)

the ones whose values are overwritten by a successive action following the
happens-before order (rule OW).

Definition 5 (not synchronised function). The not synchronised function,
given a trace and a set of synchronisable elements, returns true if and only
if the first state of the trace is not synchronised on an element in the given set
(case (1)), or if there is no write action that writes on the same location of the
first action of the given trace and that is synchronised-with it (case (2)).

not synchronised : St �+ × ℘(Sync) �→ {true, false}
not synchronised(σ0 → · · · → σi, S) = true if and only if
(1)S ∩ synchronised(σ0) = ∅ ∨
(2)�σj ∈ cut(σ0 → · · · → σi, S) : action(σj) = (w, l, v), action(σ0) = (w, l0, v0),

l = l0

Definition 6 (cut function). The cut function, given a trace and a set of
synchronisable elements, returns the trace cut to the first states that are all
synchronised-with at least one of the given elements.

cut : St �+ × ℘(Sync) �→ St �+

cut (σ0 → · · · → σi, S) =
{

ε if synchronised(σ0) ∩ S = ∅
σ0 → cut(σ1 → · · · → σi, S) otherwise

124 P. Ferrara

3.4 Fixpoint Semantics

Through the step function we define the fixpoint concrete semantics in order to
compute all the possible finite traces of a given multithreaded program.

Single-Thread Semantics. Given a thread and an element of the thread-
partitioned domain, this semantics returns the traces of its possible partial finite
executions, following the happens-before memory model, when the parallel ex-
ecutions of other threads are the ones represented by the given element of the
thread-partitioned domain. It is the basic step that will be used to define the
multithreaded semantics. This approach is classical in literature, as for instance
the example 7.2.0.6.3 of [5].

Definition 7 (S◦)

S◦ : Ψ × Ω × TId �→ ℘(St �+)
S◦ [[f, r, t]] = lfp⊆

∅ λT.{σ0} ∪ { σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 ∈ T
∧σi ∈ step(t, f, r)}

Multithreaded Semantics. The multithreaded fixpoint semantics computes
all the possible executions of a multithreaded program following the happens-
before memory model.

It starts from an element of the thread-partitioned domain that relates each
thread that is active at the beginning of the computation to an empty trace
ε (f0 = {[t �→ ε : t is the identifier of an active thread]}), and in the second
component each active thread to ⊥Ω, where

r0 = {[t �→ ⊥Ω : t is the identifier of an active thread]}.

At each iteration it computes the semantics using the traces of the execution
of different threads obtained at the previous step. The set of finite traces is
restricted only to the traces that end with a blocking state; it is necessary in
order to compute which values are visible through the not synchronised function.
In particular we want to discard all the elements that are overwritten during a
set of transitions all synchronised-with the analysed read action; to do that, we
need to consider only the traces that are complete, i.e. that end with a blocking
state.

Definition 8 (S‖)

S‖ : Ψ × Ω �→ ℘(Ψ × Ω)
S‖ [[f0, r0]] = lfp⊆

∅ λΦ.{(f0, r0)} ∪ {(fi, r) : ∃(fi−1, r) ∈ Φ : ∀t ∈ dom(fi−1) :
fi(t) ∈ S◦[[fi−1, r, t]], fi(t) = σ0 → · · · → σi, σi ∈ St ◦→}

The intuition behinds this fixpoint definition is the following:

– at the first iteration it computes the complete semantics of each thread “in
isolation” since the trace of the other threads is empty, and then the step
function performs a step using the last state of the given thread and following
the sequential consistency;

Static Analysis Via Abstract Interpretation 125

– at the second (or i-th) iteration it computes the complete semantics of each
thread in which the visible values have been modified at most one (or i-1)
times by other threads.

For instance to compute the multithreaded semantics of the following example
when x, y, and z are equal to 0 at the beginning of computation:

Thread 1 Thread 2 Thread 3
y=z; z=x; x=1;

Informally, at the first iteration we obtained that in thread 1 j=0, in thread 2
z=0, and in thread 3 x=1.

At the second iteration we still obtain that in thread 1 j=0 and in thread 3
x=1, while in thread 2 we may write the value 0 or 1 (as it may see the write
action performed by thread 3 in the previous iteration) to variable z.

During the third iteration, thread 1 may write the value 0 or 1 to the variable
y, as it may or may not see the value written by thread 2. The other two threads
behave as in the previous iteration. Moreover we have reached a fixpoint and
our computation ends.

In this simple example it is clear that we need to compute a fixpoint between
the semantics of different threads in order to propagate the values written and
read by threads. In a more complex situation, as for instance when a value
written by a parallel thread may change the control flow of the thread, this
interaction may be repeated many times, requiring a fixpoint computation.

3.5 Launching a Thread

The step function is not in position to launch a new thread, as it operates only
intra-thread steps. So the multithreaded semantics must be extended to support
this action. Since we are generic with respect to the programming language, we
do not present the details; on the other hand, it is important to define it in order
to make evidence of how the relations between threads are traced by the second
component of the multithreaded domain.

In this context, we suppose that a function launch : St �→ (TId ×St ×St)∪⊥l

is provided; given a state, if its next action is the launch of a thread, it returns the
identifier of the new thread, its initial state and the next state of the execution.
Informally, the computational multithreaded step may be defined in the following
way, where (f, r) is the previous state:

(f ′, r′) : t ∈ dom(f), f(t) = σ0 → · · · → σi, launch(σi) = (t′, σ′
0, σi+1),

f ′ = f [t �→ (σ0 → · · · → σi → σi+1), t′ �→ (σ′
0)], r

′ = r[t′ �→ (t, i)]

3.6 The Running Example

We apply all these definitions to the example presented in section 1.1. We focus
only on the analysis of the condition of thread 2.

126 P. Ferrara

Thread1 �→ j=0
i=0

→ j=0
i=1

→ j=1
i=1

Thread2 �→ j=0
i=0

→ j=0
i=0

Fig. 3. The result of the first iteration of the multithreaded semantics computation

The result obtained by the first iteration of the computation of S‖ is depicted
by figure 3 (we represent only the state of shared memory, ignoring the control
state and the private memory). Note that, since the choice of which shared
memory is visible is deterministic, it is composed only of an element of the
concrete domain.

Which are the states of the shared memory returned by the visible function
when we are evaluating the condition of thread 2 at the second iteration? In
order to compute them, we need to consider which values are returned by the
project function. We ignore the first use of this function (project(suffix (f(t′)), i),
where t′ is the thread that launched the current one), as we suppose there were
two parallel threads at the beginning of the execution, and so that both are
launched by the system. In the second case, we use the project function only
with the execution trace of thread 1, as it is the only thread in the domain
of our multithreaded state that is not the current thread. Since there is no
synchronisation action, S is empty. In this situation, the read actions of variables
j and i are both able to see the values 0 and 1, as 0 is sequentially consistent,
while 1 has been written by thread 1 and may be returned by the visible function.

Finally, we are in position to check if, in this situation, the condition may be
evaluated to true. The condition to be evaluated is j == 1&&i == 0. If the
read action on i sees the value sequentially consistent, and the one on j the
value written by the second instruction of thread 1 (and returned by the visible
function), the condition would be evaluated to true. This behaviour is sound
w.r.t. the happens-before memory model, as pointed out by section 2.2.

4 Multithreaded Abstract Semantics

In order to develop a static analysis via abstract interpretation [4,5], we define
the abstract semantics aimed at computing an approximation of the concrete
one.

4.1 Required Elements

As we have done for the concrete semantics, in order to be generic with respect
to the programming language we need some sets and functions.

Static Analysis Via Abstract Interpretation 127

In particular, the required sets are the following, with the same meaning as
the ones introduced by the concrete semantics, but applied to abstract elements:
TId , Sh, Loc, Sync, and St . Moreover, we suppose that Sh : Loc �→ Val .

In the same way the function ◦→#: St × St �→ {true, false} defines the
abstract single step behaviours of the computation.

About the functions, we require the following, with the same meaning as the
concrete semantics: shared# : St �→ Sh, action# : St �→ ⊥a ∪({r, w}×Loc×Val),
synchronised# : St �→ ℘(Sync), and set shared# : St × Sh → St .

4.2 Trace Partitioned Abstract Domain

The abstract domain is similar to the concrete one: the only difference is that it
deals with abstract sets, while the meaning is exactly the same.

Ψ : TId → St
�+

Ω : TId → ((TId × Integer) ∪ ⊥Ω)

4.3 Upper Bound Operator and Abstraction Function

We define the upper bound operator and the abstraction function on the domain
just presented. We need the upper bound operator between two single-thread
states (�St) and between two values (�Val), the abstraction functions α′

ST : St �→
St (that given a concrete single-thread state returns its abstraction), and α′

Tid :
TId �→ TId (that given a concrete thread identifier returns its abstraction), are
provided.

Note that in these definitions (and in the soundness proofs) we focus only
on the first component of the domain (Ψ), as the second part just traces some
relations between threads, and it can be linearly abstracted applying the α′

TId
function.

Definition 9 (Upper bound operator on Ψ)

�f : Ψ × Ψ �→ Ψ

f1 �f f2 = {[t �→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

⎧
⎨

⎩

f1(t) �τ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f1(t) if t ∈ dom(f1) \ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)

}

Definition 10 (Upper bound operator on St
�+
)

�τ : St
�+ × St

�+ �→ St
�+

(σ0 → · · · → σj) �τ (σ′
0 → · · · → σ′

i) =
= (σ0 �St σ′

0) → · · · → (σj �St σ′
j) → (σ′

j+1) → (σ′
i)

supposing that j ≤ i. Otherwise, �St is commutative and it is sufficient to com-
mute the elements.

128 P. Ferrara

Definition 11 (Abstraction function of ℘(Ψ))

αf : ℘(Ψ) �→ Ψ

αf (Φ) =
⊔

f
f∈Φ

α′
f (f)

α′
f : Ψ �→ Ψ

α′
f (f) = {[t �→ τ] : ∃t ∈ dom(f) : t = α′

TId (t) ∧ τ = α′
τ (f(t))}

Definition 12 (Abstraction function of ℘(St �+))

ατ : ℘(St �+) �→ St
�+

ατ (T) =
⊔

τ
τ∈T

α′
τ (τ)

α′
τ : St �+ �→ St

�+

α′
τ (σ0 → · · · → σi) = α′

ST (σ0) → · · · → α′
ST (σi)

4.4 step# Function

The step# function is quite similar to the concrete one. If the action is not a
read it just performs the step through the ◦→# function. Otherwise it computes
the step injecting into the read value the least upper bound of all the values
returned by the visible# function and of the sequential consistent value. The
visible# function is obtained as the abstraction of the visible function.

Definition 13 (step# function)

step# : TId × Ψ × Ω �→ St
step# (t, f , s) = σ where f(t) = σ0 → · · · → σi and

σi
◦→#

σ if π1(action#(σi)) �= r

σ′
i

◦→#
σ : if π1(action#(σi)) = r

V = visible#(t, π2(action#(σi)), synchronised#(σi), f , s(t))
v =

⊔

V al
v′∈V

v′

sh = shared#(σi), sh
′
= sh[l �→ v �Val sh(l)]

σ′
i = set shared#(σ, sh

′
)

In this definition, we focused on a situation in which the abstract domain for
primitive values is non-relational; in this way, we do not support a relational
domain as for instance octagons [15].

Static Analysis Via Abstract Interpretation 129

4.5 Fixpoint Semantics

We proceed as in section 3.4: we define the single trace semantics in fixpoint
form basing it on the step# function just presented, and then we present the
multithreaded semantics.

Definition 14 (Single-thread semantics S
◦
)

S
◦

: (Ψ × Ω × TId) �→ St
�+

S
◦

[[f, r, t]] = lfp

∅ λτ.{σ0} �τ {σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 = τ∧

σi = step#(t, f , r)}

Definition 15 (Multithreaded semantics S
‖
)

S
‖

: Ψ × Ω �→ Ψ × Ω

S
‖

[[f0, r0]] = lfp

∅ λ(f, r).{(f0, r0)} �f {(f i, r) : ∀t ∈ dom(f) : f i(t) = S

◦
[[f, t]]}

The intuition of these definitions is exactly the same of the concrete semantics:
S
◦

computes the semantics of a single thread given a multithreaded state (from
which the step# function extrapolates the visible values of the shared memory
through the visible# function), while S

‖
iterates this computation using the

previous multithreaded state for each thread until a fixpoint is reached.
The definition of the multithreaded semantics may be straightforwardly ex-

tended in order to support widening and narrowing operators [4], which are
required to guarantee the convergence of the analysis when the abstract domain
is of infinite height.

Theorem 1 (Soundness of S‖). The multithreaded semantics is sound, i.e. let
Ψpre be the set of all the prefixpoints of F

‖
, then ∀f ∈ Ψpre : αf (S‖)[[f]] �f S

‖
[[f]].

4.6 Launching a Thread

The launch of a thread may be abstracted from the composition of the concrete
definition presented by section 3.5 with the abstraction function.

4.7 Complexity

The proposed analysis requires the computation of two nested fixpoints. The
complexity of this approach might appear too heavy in order to apply it to real
programs, as the computation of a fixpoint is known to be an expensive oper-
ation. On the other hand, the multithreaded semantics may execute in parallel
the single-thread semantics of different active threads; supposing that there is
a number of processors at least equal to the number of active threads (look-
ing at the current trend of the CPU market, with the appearance of multicore
architectures, this supposition is not unreasonable), the complexity of each itera-
tion of S

‖
corresponds to the most expensive computation of the active threads’

130 P. Ferrara

semantics. In addition, there are interesting results in optimising the fixpoint
computation [14].

A preliminary implementation of two nested fixpoints has been presented by
[8]; note that this work does not implement the happens-before memory model,
but it relies on two nested fixpoints in order to compute a sound approximation
of a multithreaded program. Even if the computation of the fixpoint is sequential,
the experimental results are quite promising: the analysis of 24 threads and more
than 2.000 bytecode statements requires 1’07”. Moreover, the execution time
seems to grow linearly w.r.t. the number of analysed threads and statements.

In this context, our approach may be able to scale up; indeed, model check-
ers seem to be inadequate to analyse multithreaded programs because of the
state explosion problem, which is particularly relevant when dealing with all the
possible interleavings of threads’ executions. In addition, partial order reduction
techniques [17] do not improve significantly their performance when there are
many interactions between threads.

Finally, since our approach is parametrised on the abstract intra-thread do-
main and semantics, we can also tune them in order to obtain a faster but less
precise or a slower but more precise analysis.

4.8 The Running Example

We analyse the running example presented in section 1.1 supposing that we use
the interval domain in order to catch information about integer variables.

At the first iteration we obtain the same results as the concrete semantics,
completely described in section 3.6. The only difference is that now we deal with
abstract values, and so we relate each integer variable to an interval value instead
of an integer.

Then we analyse which abstract values are returned by the visible# function
when reading i and j. In particular, both the initial values (j and i equal to 0)
and the values written by thread 1 (1 written both on j and on i) are visible. For
both the variables the least upper bound of these elements returns the interval
[0..1]. Then the condition of thread 2 (j == 1&&i == 0) may be evaluated to
true, and we conclude that the exception may be thrown. This result is sound
w.r.t. the concrete semantics, and so to the happens-before memory model.

5 Related Works

Many approaches have been developed in order to statically analyse multith-
readed programs; most of them deal with deadlock and data race detection [20].
In the last few years other approaches, analysing other and more generic proper-
ties, have been proposed [22,3,25,7]. Usually these approaches suppose that the
execution is sequentially consistent, but this assumption is not legal under, for
instance, the Java Memory Model.

[21] presents a semantics for Java multithreaded programs that respects an
earlier version of the Java Memory Model. In particular it presents an executable

Static Analysis Via Abstract Interpretation 131

semantics that is sound and complete with respect to the Java Memory Model,
and it verifies programs on it through model checking techniques. It is specific
for the Java programming language, it deals with the memory model and also
the semantics of the programming language, and it is affected by the state space
explosion problem.

In a similar way, [9] develops a model checker sensitive to the .NET memory
model [6]. It is specific for the C# language, and also in this case the experimental
results show the effects of the state explosion problem.

[2] proposes a formalisation of the Java Memory Model through a semantics
that combines the operational, denotational, and axiomatic approaches. It builds
up a subset of the legal executions under the Java Memory Model. In this way
this approach is similar to ours, since in order to obtain a sound static analysis
we compute a superset of these executions. However it is specific to the Java
programming language, and it does not propose any static analysis.

[23] presents a framework in order to formalise and study a memory model.
This approach is generic w.r.t. the programming language, and it allows the
comparison of different memory models. Indeed, it does not propose any static
analysis.

In this research context, as far as we know our work appears to be the first
one that combines a generic definition of a memory model and its static analysis.

6 Conclusion and Future Work

In this paper we present the formalisation of the happens-before memory model
in a fixpoint form, and we build on top of it an abstraction in order to statically
analyse a program w.r.t. this memory model. It is completely generic both to
the programming language and to the analysed property, as it is parameterized
by the concrete and abstract single-thread state, and semantics. In this way we
completely split the formalisation of the memory model from the programming
language. Moreover, at the abstract level the core of the happens-before memory
model (i.e. the visible# function) is obtained by linearly abstracting its concrete
definition. In this way, we are in position to automatically build up a static
analysis starting from the concrete specification of the core of a memory model.

Our approach may be easily applied to define and analyse other memory
models, and also as an unifying framework in order to compare them: if we
prove that a memory model is an abstraction of another one, we prove that all
the analyses developed on the second one are sound in the first analysis.

We think that the idea of separating the memory model from the program-
ming language on which it is applied is very promising, as it allows the reuse
of analyses on different languages with different memory models. Until now, the
only memory model that appears to have been studied deeply is the Java Mem-
ory Model, but it is not unrealistic to suppose that in the near future different
models, like [6], will appear, to which our approach seems to be easily extendible.

On the other hand, the idea of reusing a memory model for a different pro-
gramming language appears already near to reality. Behind the specification of

132 P. Ferrara

a memory model there often is much work (sometimes many years of deep study,
in order to understand the problems and how solve them), and so its reuse is
not only a possibility, but sometimes a need. For instance, there is a draft [1]
that depicts how to apply the Java Memory Model to the C++ programming
language.

6.1 Future Works

Our aim is to develop a static analysis on Java bytecode for multithreaded
programs. In this way, we are going to define the concrete and abstract intra-
thread domain and semantics of this language, and some properties on it. We
want also to extend our definitions in order to introduce volatile variables and
the causality requirement of the Java Memory Model.

Acknowledgements. We would like to thank Mike Barnett, Agostino Cortesi,
Radhia Cousot, Francesco Logozzo and the anonymous referees.

References

1. Alexandrescu, A., Boehm, H., Henney, K., Lea, D., Pugh, B.: Memory model for
multithreaded c++. C++ standards committee paper WG21/N1680 (September
2004)

2. Cenciarelli, P., Knapp, A., Sibilio, E.: The java memory model: Operationally,
denotationally, axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 331–346. Springer, Heidelberg (2007)

3. Chaumette, S., Ugarte, A.: A formal model of the java multi-threading system and
its validation on a known problem. In: Proceedings of IPDPS 2001, IEEE Computer
Society, Los Alamitos (2001)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press, New York (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL 1979, pp. 269–282. ACM Press, New York (1979)

6. Standard ECMA-335. Common Language Infrastructure (CLI). ECMA, 4th edn.
(June 2006)

7. Farzan, A., Madhusudan, P.: Causal dataflow analysis for concurrent programs.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 102–116.
Springer, Heidelberg (2007)

8. Ferrara, P.: A fast and precise analysis for data race detection. In: Proceedings of
Bytecode 2008, vol. ENTCS, Elsevier, Amsterdam (2008)

9. Huynh, T.Q., Roychoudhury, A.: A memory model sensitive checker for c#. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, Springer,
Heidelberg (2006)

10. Koch, G.: Discovering multi-core: extending the benefits of Moore’s law. In: Tech-
nology Intel Magazine, July 2005, Intel (2005)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:
Commun. ACM, vol. 21-7, pp. 558–565. ACM Press, New York (1978)

Static Analysis Via Abstract Interpretation 133

12. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

13. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
POPL 2005, pp. 378–391. ACM Press, New York (2005)

14. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: Efficient, parametric fixpoint algo-
rithm for analysis of java bytecode. In: Proceedings of Bytecode 2007, vol. ENTCS,
Elsevier, Amsterdam (2007)

15. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19, 31–100 (2006)

16. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formal-
izations. ACM Lett. Program. Lang. Syst. 1, 74–88 (1992)

17. Peled, D.: Ten years of partial order reduction. In: Klette, R., Peleg, S., Sommer,
G. (eds.) RobVis 2001. LNCS, vol. 1998, Springer, Heidelberg (2001)

18. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

19. Reynolds, J.C.: Towards a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, Springer, Hei-
delberg (2004)

20. Rinard, M.C.: Analysis of multithreaded programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, Springer, Heidelberg (2001)

21. Roychoudhury, A., Mitra, T.: Specifying multithreaded java semantics for program
verification. In: Proceedings of ICSE 2002, May 2002, ACM Press, New York (2002)

22. Ruys, T.C., Aan de Brugh, N.H.M.: Mmc: the mono model checker. In: Proceedings
of Bytecode 2007, vol. ENTCS, Elsevier, Amsterdam (2007)

23. Saraswat, V.A., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: Proceedings of PPoPP 2007, pp. 161–172. ACM Press, New York (2007)

24. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue 3(7),
54–62 (2005)

25. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Rigorous concurrency analysis of
multithreaded programs. In: Proceedings of CSJP 2004 (2004)

Pex–White Box Test Generation for .NET

Nikolai Tillmann and Jonathan de Halleux

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

{nikolait,jhalleux}@microsoft.com

Abstract. Pex automatically produces a small test suite with high code
coverage for a .NET program. To this end, Pex performs a systematic
program analysis (using dynamic symbolic execution, similar to path-
bounded model-checking) to determine test inputs for Parameterized
Unit Tests. Pex learns the program behavior by monitoring execution
traces. Pex uses a constraint solver to produce new test inputs which
exercise different program behavior. The result is an automatically gen-
erated small test suite which often achieves high code coverage. In one
case study, we applied Pex to a core component of the .NET runtime
which had already been extensively tested over several years. Pex found
errors, including a serious issue.

1 Overview

Pex [24] is an automatic white-box test generation tool for .NET. Starting from
a method that takes parameters, Pex performs path-bounded model-checking
by repeatedly executing the program and solving constraint systems to obtain
inputs that will steer the program along different execution paths, following the
idea of dynamic symbolic execution [12,6]. Pex uses the theorem prover and
constraint solver Z3 [3] to reason about the feasibility of execution paths, and
to obtain ground models for constraint systems.

While the concept of dynamic symbolic execution is not new, Pex extends the
previous work in several ways:

– Pex can build faithful symbolic representations of constraints that charac-
terize execution paths of safe .NET programs. In other words, Pex contains
a complete symbolic interpreter for safe programs that run in the .NET vir-
tual machine. (And the constraint solver Z3 comes with decision procedures
for most such constraints.)

– Pex can reason about a commonly used set of unsafe features of .NET.
(Unsafe means unverifiable memory accesses involving pointer arithmetic.)

– Pex employs a set of search strategies with the goal to achieve high statement
coverage in a short amount of time.

We have integrated Pex into Visual Studio as an add-in. Pex can generate test-
cases that can be integrated with various unit testing frameworks, including
NUnit [20] and MSTest [22]. Pex is an extensible dynamic program analysis

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 134–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pex–White Box Test Generation for .NET 135

platform; one recent plug-in is DySy [7], an invariant inference tool based on
dynamic symbolic execution. We are working towards making the symbolic ex-
ecution analysis compositional [1].

We have conducted a case study in which we applied Pex to a core component
of the .NET architecture which had already been extensively tested over five
years by approximately 40 testers. The component is the basis for other libraries,
which are used by thousands of developers and millions of end users. Pex found
errors, including a serious issue. Because of proprietary concerns, we cannot
identify the .NET component on which this case study was based. We will refer
to it as the “core .NET component” in the following.

The rest of the paper is structured as follows: Section 2 contains an intro-
duction to Pex. Section 3 discusses the implementation of Pex in more detail.
Section 4 shows a particular application of Pex to unsafe .NET code. Section 5
presents the results of applying Pex to a core .NET component. Section 6 com-
pares Pex with other related technologies, and Section 7 concludes.

2 An Introduction to Pex

2.1 Parameterized Unit Testing

At its core, Pex is a test input generator. A test input generator is only useful
in practice

– if we have a program to generate test inputs for, and
– if we have a test oracle that decides whether a program execution was suc-

cessful for some given test inputs.

For Pex, we have adopted the notion of parameterized unit tests [28,29] which
meet both requirements. A parameterized unit test is simply a method that takes
parameters, performs a sequence of method calls that exercise the code-under-
test, and asserts properties of the code’s expected behavior.

For example, the following parameterized unit test written in C# creates an
array-list with a non-negative initial capacity, adds an element to the list, and
then asserts that the added element is indeed present.

[PexMethod]
public void AddSpec(

// data
int capacity , object element) {
// assumptions
PexAssume .IsTrue(capacity >= 0);
// method sequence
ArrayList a = new ArrayList (capacity);
a.Add(element);
// assertions
Assert.IsTrue(a[0] == element);

}

Here, AddSpec is decorated with the custom attribute [PexMethod], which Pex
uses to distinguish parameterized unit tests from ordinary methods.

136 N. Tillmann and J. de Halleux

2.2 The Testing Problem

Starting from parameterized unit tests as specification, we formulate the testing
problem as follows.

Given a sequential program P with statements S, compute a set of pro-
gram inputs I such that for all reachable statements s in S there exists
an input i in I such that P (i) executes s.

Remarks:

– By sequential we mean that the program is single-threaded.
– We consider failing an assertion, or violating an implicit contract of the

execution engine (e.g. NullReferenceException when null is dereferenced) as
special statements.

2.3 The Testing Problem in Practice

In general, the reachability of program statements is not decidable. Therefore, in
practice we aim for a good approximation, e.g. high coverage of the statements
of the program. Instead of statement coverage, other coverage metrics such as
arc coverage can be used.

In a system with dynamic class loading such as .NET, it is not always possible
to determine the statements of the programs ahead of time. In the worst case,
the only way to determine all reachable statements is an incremental analysis of
all possible behaviors of the program.

The analysis of all possible program behaviors, i.e. all execution paths, may
take an infinite amount of time. In practice, we have only a limited amount of
time available, so we aim for an analysis that can produce test inputs for most
reachable statements fast.

Another problem arises from the fact that most interesting programs interact
with the environment. In other words, the semantics of some program statements
may not be known ahead of time. Most static analysis tools make conservative
assumptions in such cases and may produce many false positives, e.g. test-cases
that supposedly may exhibit an error, but in practice do not. For test generation
tools it is more appropriate to take into account environment interactions in
order to filter out false positives.

In the remainder of this section we describe the foundations on which Pex
tries to address the testing problem, and the next section describes Pex’ imple-
mentation in more detail, including how heuristic search strategies often solve
the problem of achieving high coverage fast.

2.4 Symbolic Execution

Pex implements a white box test input generation technique that is based on
the concept of symbolic execution. Symbolic execution works similar to concrete

Pex–White Box Test Generation for .NET 137

execution, only that symbolic variables are used for the program inputs instead
of concrete values. When a program variable is updated to a new value during
program execution, then this new value may be an expression over the symbolic
variables. When the program executes a conditional branch statement where the
condition is an expression over the symbolic variables, symbolic execution has to
consider two possible continuations, since the condition may evaluate to either
true or false, depending on the program inputs. For each path explored by sym-
bolic execution in this way, a path condition is built over symbolic variables. The
path condition is the conjunction of the expressions that represent the branch
conditions of the program. In this manner all constraints are collected which are
needed to deduce what inputs cause an execution path to be taken.

A constraint solver or automatic theorem prover is used to decide the feasi-
bility of individual execution paths, and to obtain concrete test inputs as repre-
sentatives of individual execution paths.

2.5 Dynamic Symbolic Execution

Pex explores the reachable statements of a parameterized unit test using a tech-
nique called dynamic symbolic execution [12,6]. This technique consists in execut-
ing the program, starting with very simple inputs, while performing a symbolic
execution in parallel to collect symbolic constraints on inputs obtained from
predicates in branch statements along the execution. Then Pex uses a constraint
solver to compute variations of the previous inputs in order to steer future pro-
gram executions along different execution paths. In this way, all execution paths
will be exercised eventually.

Dynamic symbolic execution extends conventional static symbolic execution
[16] with additional information that is collected at runtime, which makes the
analysis more precise [12,11]. While additional information is collected by moni-
toring concrete traces, each of these traces is representative of an execution path,
i.e. the equivalence class of test inputs that steer the program along this par-
ticular execution path. By taking into account more details of structure of the
program (e.g. boundaries of basic blocks or functions), even bigger equivalences
classes can be analyzed at once [12,1].

Algorithm 2.1 shows the general dynamic symbolic execution algorithm imple-
mented in Pex. The choice of the new program inputs i in each loop iteration de-
cides in which order the different execution paths of the program are enumerated.

Pex uses several heuristics that take into account the structure of the program
and the already covered statements when deciding on the next program inputs.
While the ultimate goal of Pex is to discover all reachable statements, which
is an undecidable problem, in practice Pex attempts to achieve high statement
coverage fast. This simplifies the configuration of Pex greatly: the user just has
to set a time limit or another rough exploration bound. Other dynamic symbolic
execution tools ([12,11,12,6]) perform an exhaustive search of all the execution
paths in a fixed order, within bounds on the size and structure of the input given

138 N. Tillmann and J. de Halleux

by the user. In the case of Pex the inputs are often richly structured object
graphs for which it is a difficult problem to define practical and useful bounds.

Algorithm 2.1. Dynamic symbolic execution
Set J := ∅ (intuitively, J is the set of already
loop analyzed program inputs)

Choose program input i /∈ J (stop if no such i can be found)
Output i
Execute P (i); record path condition C (in particular, C(i) holds)
Set J := J ∪ C (viewing C as the set {i | C(i)})

end loop

2.6 More Reasons for Dynamic Symbolic Execution

Symbolic execution was originally proposed [16] as a static program analysis
technique, i.e. an analysis that only considered the source code of the analyzed
program. This approach works well as long as all decisions about the feasibility
of execution paths can be made on basis of the source code alone. It becomes
problematic when the program contains statements that cannot be reasoned
about easily (e.g. memory accesses through arbitrary pointers, or floating point
arithmetic), or when parts of the program are actually unknown (e.g. when
the program communicates with the environment, for which no source code is
available, and whose behavior has not been specified rigorously).

It is not uncommon for .NET programs to use unsafe .NET features, i.e. using
pointer arithmetic to access memory for performance reasons, and most .NET
programs interact with other unmanaged (i.e. non-.NET) components or the
Windows API for legacy reasons.

While static symbolic execution algorithms do not use any information about
the environment into which the program is embedded, dynamic symbolic execu-
tion can leverage dynamic information that it observes during concrete program
executions, i.e. the memory locations which are actually accessed through point-
ers and the data that is passed around between the analyzed program and the
environment.

As a result, Pex can prune the search space. When the program communi-
cates with the environment, Pex builds a model of the environment from the
actual data that the environment receives and returns. This model is an under-
approximation of the environment, since Pex does not know the conditions under
which the environment produces its output. The resulting constraint systems
that Pex builds may no longer accurately characterize the program’s behavior.
In practice this means that for a computed input the program may not take the
predicted execution path. Since Pex does not have a precise abstraction of the
program’s behavior in such cases, Pex may not discover all reachable execution
paths, and thus all reachable statements.

In any case, Pex always maintains an under-approximation of the program’s
behavior, which is appropriate for testing.

Pex–White Box Test Generation for .NET 139

3 Pex Implementation Details

3.1 Instrumentation

Pex monitors the execution of a .NET program through code instrumentation.
Pex plugs into the .NET profiling API [21]. It inspects the instructions of a
method in the intermediate language [15] which all .NET compilers target. Pex
rewrites the instructions just before they are translated into the machine code
at runtime. The instrumented code drives a “shadow interpreter” in parallel to
the actual program execution. The “shadow interpreter”

– constructs symbolic representations of the executed operations over logical
variables instead of the concrete program inputs;

– maintains and evolves a symbolic representation of the entire program’s state
at any point in time;

– records the conditions over which the program branches.

Pex’ “shadow interpreter” models the behavior of all verifiable .NET instruc-
tions precisely, and models most unverifiable (involving unsafe memory accesses)
instructions as well.

3.2 Symbolic Representation of Values and Program State

A symbolic program state is a predicate over logical variables together with an
assignment of expressions over logical variables to locations, just as a concrete
program state is an assignment of values to locations. For Pex, the locations of
a state consist of static fields, instance fields, method arguments, local variables,
and positions on the operand stack.

Pex’ expression constructors include primitive constants for all basic .NET
data types (integers, floating point numbers, object references), and functions
over those basic types representing particular machine instructions, e.g. addition
and multiplication. Pex uses tuples to represent .NET value types (“structs”)
as well as indices of multi-dimensional arrays, and maps to represent instance
fields and arrays, similar to the heap encoding of ESC/Java [10]: An instance
field of an object is represented by a field map which associates object references
with field values. (For each declared field in the program, there is one location
in the state that holds current field map value.) An array type is represented
by a class with two fields: a length field, and a field that holds a mapping from
integers (or tuples of integers for multi-dimensional arrays) to the array elements.
Constraints over the .NET type system and virtual method dispatch lookups
are encoded in expressions as well. Predicates are represented by boolean-valued
expressions.

We will illustrate the representation of the state with the following class.

class C {
int X;
int GetXPlusOne () { return this.X + 1; }
void SetX(int newX) { this.X = newX; }

}

140 N. Tillmann and J. de Halleux

Symbolically executing the method c.GetXPlusOne() with the receiver object
given by the object reference c will yield the expression add(select(X_Map,c), 1)

where the select function represents the selection of c’s X-field value from the
current field map X_Map. After symbolically executing c.SetX(42), the final state
will assign the expression update(X_Map,c,42) to the location that holds the
current field map of X. X_Map denotes the value of the field map of X before the
execution of the method.

Pex implements various techniques to reduce the enormous overhead of the
symbolic state representation. Before building a new expression, Pex always ap-
plies a set of reduction rules which compute a normal form. A simple example
of a reduction rule is constant folding, e.g. 1 + 1 is reduced to 2. All logical con-
nectives are transformed into a binary decision diagram (BDD) representation
with if-then-else expressions [5]. All expressions are hash-consed, i.e. only one
instance is ever allocated in memory for all structurally equivalent expressions.
Map updates, which are used extensively to represent the evolving heap of a
program, are compactly stored in tries, indexed over unique expression indices.

Based on the already accumulated path condition, expressions are further
simplified. For example, if the path condition already established that x > 0,
then x < 0 simplifies to false.

3.3 Symbolic Pointers

Pex represents pointers as expressions as well. Pex distinguishes the following
pointer constructors.

– Pointer to nowhere. Represents an invalid pointer, or just null.
– Pointer to value. Represent a pointer to an immutable value, e.g. a pointer

to the first character of a string.
– Pointer to static field.
– Pointer to instance field map. Represents a pointer to the mapping of an

instance field that associates object references with field values.
– Pointer to method argument or local variable.
– Pointer to element. Given a pointer to a mapping and an index expression,

represents a pointer to the indexed value.

While the pointers in safe, managed .NET programs are guaranteed to be
either null or pointing to a valid memory location, unsafe .NET code that is
sufficiently trusted to bypass .NET’s byte code verifier does not come with such
a guarantee. Thus, when the user enables Pex’ strict pointer checking mode,
Pex builds a verification condition whenever the program is about to perform
an indirect memory access through a pointer. In particular, given a pointer to
an element of an array, the condition states that the index must be within the
bounds of the array.

In practice, the verification conditions can verify most uses of unsafe point-
ers. For example, the following code shows a common use of pointers, with the
intention of simply avoiding the overhead of repeated array-bounds checking.

Pex–White Box Test Generation for .NET 141

public unsafe bool BuggyContainsZero (byte [] a) {
if (a == null || a.Length == null) return false;
fixed (byte * p = a)

for (int i = 0; i <= a.Length; i++)
if (p[i] == 0) return true;

return true;
}

This code contains an error: The loop condition should be i < a.Length in-
stead of i <= a.Length. This error might not be detected with conventional test-
ing, since reading beyond the bounds of an array with a pointer often does not
trigger an exception (the allocated memory is usually advanced to another block
of allocated memory).

While the problem of buffer overflows has been well studied, e.g. in the context
of C programs that are compiled to machine code directly, we are not aware
of a thorough checker in the context of managed execution environments, in
particular .NET.

Pex can not only detect the error in strict pointer-checking mode, Pex will even
steer the program towards obscure program behaviors by test input generation
through dynamic symbolic execution.

However, Pex cannot symbolically reason about all operations that involve
pointers. In particular, Pex does not track when the content of a memory is
reinterpreted, e.g. a pointer to an array of bytes is cast to a pointer of an integer,
and when the memory was obtained from the environment, e.g. through a call
to a Windows API.

3.4 Search Strategy

Deciding reachability of program statements is a hard problem. In a system with
dynamic class loading and virtual method dispatch the problem does not become
easier. As discussed earlier, Pex’ approach based on dynamic symbolic execution
enumerates feasible execution paths, where information from previously executed
paths is used to compute test inputs for the next execution paths. Most earlier
approach to dynamic symbolic execution [12,27,26,6] in fact only use information
from the last execution path to determine test inputs that will exercise the
next path. This restriction forces them to use a fixed “depth-first, backtracking”
search order, where the next execution path would always share the longest
possible prefix with the previous execution path. As a result, a lot of time may be
spent analyzing small parts of the program before moving on. These approaches
require well defined bounds on the program inputs to avoid unfolding the same
program loop forever, and they may discover “easy” to cover statements only
after an exhaustive search. (To avoid getting stuck in the depth-first search,
these earlier approaches frequently inject random test inputs to steer the search
towards other parts of the program. However, this prevents any deep symbolic
analysis.)

Pex uses the information of all previously executed paths: During exploration,
Pex maintains a representation of the explored execution tree of the program,

142 N. Tillmann and J. de Halleux

whose paths are the explored execution paths. In each step of the test generation
algorithm, Pex picks an outgoing unexplored branch of the tree, i.e. the prefix
of a feasible execution path plus an outgoing branch that has not been exercised
yet. The next test inputs are the solution (if any) of the constraint system that
is built from the conjunction of the path condition of the feasible path prefix,
and the condition of the unexercised outgoing branch. If the constraint system
has no solution, or it cannot be computed by the constraint solver, the search
marks the branch as infeasible and moves on.

In earlier experiments, we tried well-known search strategies to traverse the
execution tree, such as breadth-first search. While this strategy does not get
stuck in the same way as depth-first search, it does not take into account the
structure of the program either.

The program consists of building blocks such as methods and loops, which
may get instantiated and unfolded many times along each execution path, giv-
ing rise to multiple branch instances in the execution path (and tree). For our
ultimate goal, to cover all reachable statements, the number of unfoldings is ir-
relevant, although a certain number of unfoldings might be required to discover
that a statement is reachable. How many and which unfoldings are required is
undecidable.

In order to avoid getting stuck in a particular area of the program by a fixed
search order, Pex implements a fair choice between all such unexplored branches
of the explored execution tree. Pex includes various fair strategies which partition
all branches into equivalence classes, and then pick a representative of the least
often chosen class. The equivalence classes cluster branches by mapping them

– to the branch statement in the program of which the execution tree branch
is an instance (each branch statement may give rise to multiple branch in-
stances in the execution tree, e.g. when loops are unfolded),

– to the stack trace at the time the brach was recorded,
– to the overall branch coverage at the time the branch was recorded,
– to the depth of the branch in the execution tree.

Pex combines all such fair strategies into a meta-strategy that performs a fair
choice between the strategies.

Creating complex objects. When an argument of a parameterized unit test
is an object that has non-public fields, Pex will still collect constraints over the
usage of that field. Later, new test inputs may be computed which assign partic-
ular values to those fields. But then Pex may not know how to create an object
through the publicly available constructors such that the object’s private fields
are in the desired state. (Of course, Pex could use .NET’s reflection mechanism
to set private fields in arbitrary ways, but then Pex might violate the (implicit)
class invariant.)

In such cases, Pex selects a constructor of the class (the user may configure
which constructor is chosen), and Pex includes this constructor in the exploration
of the parameterized unit test. As a result, Pex will first try to find a non-
exceptional path through the control-flow of the constructor, and then use the

Pex–White Box Test Generation for .NET 143

created object to further explore the parameterized unit test that required the
object. In other words, Pex tries to avoid the backward search to find a way to
reach a target state; instead, it will perform a forward search that is compatible
with dynamic symbolic execution.

In this way, directed object graphs can easily be created, where arguments
to constructors can refer to earlier constructed objects. Cyclic object graphs
can only result if a constructor updates a field of an argument to point to the
constructed object.

As an alternative to employing only existing constructors to configure objects,
the user may also provide factory methods, which could invoke a sequence of
method calls to construct and configure a new object, possibly creating cyclic
references as well.

3.5 Constraint Solving

For each chosen unexplored branch, Pex builds a formula that represents the
condition under which this branch may be reached. Pex performs various pre-
processing steps to reduce the size of the formula before handing it over to
the constraint solver, similar to constraint caching, and independent constraint
optimization [6].

Pex employs Z3 as its constraint solver. Pex faithfully encodes all constraints
arising in safe .NET programs such that Z3 can decide them with its built-in
decision procedures for propositional logic, fixed sized bit-vectors, tuples, arrays,
and quantifiers. Arithmetic constraints over floating point numbers are approx-
imated by a translation to rational numbers. Pex also encodes the constraints
of the .NET type system and virtual method dispatch lookups as universally
quantified formulas.

3.6 Pex Architecture

Internally, Pex consists of several libraries:

Microsoft.ExtendedReflection. Extended Reflection (ER) is a library that
enables the monitoring of .NET applications at the instruction level. It uses
the unmanaged profiling API to instrument the monitored .NET program
with callbacks to the managed ER library. The callbacks are used to drive
the “shadow interpreter” mentioned in Section 3.1.

Microsoft.Pex.Framework. This library is serves as a front-end for the user
to configure Pex. It defines a number of .NET custom attributes, including
the PexMethod attribute that we used in the earlier example.

Microsoft.Pex. The Pex engine implements the search for test inputs, by re-
peatedly executing the program while monitoring it, and building constraint
systems to obtain new test inputs.

Microsoft.Z3. [3] is the constraint solver that Pex uses.

144 N. Tillmann and J. de Halleux

Pex is built from individual components, that are organized in three layers:

1) A set of components is alive for the entire lifetime of the Pex engine.
2) In addition, a set of components is created and kept alive for the duration
of the exploration of a single parameterized unit test. 3) In addition, a set of
components is created and kept alive for each execution path that is executed
and monitored.

Pex’ monitoring library, ER, is a quite general monitoring library that can
be used in isolation. In addition to Pex itself, we have built PexCop on top of
ER, a dynamic program analysis application which analyzes individual execution
traces, looking for common programming errors, e.g. resource leaks.

Pex itself provides an extension mechanism, where a user can hook into any
of the three component layers of Pex (engine, exploration, path). For example,
DySy [7], an invariant inference tool based on dynamic symbolic execution, uses
this extension mechanism to analyze all execution path of a parameterized unit
test.

3.7 Limitations

There are certain situations in which Pex cannot analyze the code properly:

Nondeterminism. Pex assumes that the analyzed program is deterministic;
this means in particular that all environment interactions should be deter-
ministic. Pex detects non-determinism by comparing the program’s actual
execution path with the predicted execution path. When non-deterministic
behavior is detected, Pex prunes the test inputs that caused it. Pex also
gives feedback to the user, showing the program branches where monitored
execution paths began to deviate from the prediction. The user can decide
to ignore the problems, or the user can change the code to make it more
testable.

To alleviate the problem, Pex has a mechanism for substituting methods
that have a known non-deterministic behavior with deterministic alterna-
tives. For example, Pex routinely substitutes the TickCount property of the
System.Environment class that measures time with a constant alternative.
Substitutions are easy to write by users; they are applied by Pex through
name matching.

namespace __Substitutions .System {
public static class Environment {

public static int get_TickCount___redirect() {
return 0;

}
}

}

Concurrency. Today, Pex does not handle multithreaded programs. Pex only
monitors the main thread of the program. Other threads may cause non-
deterministic behavior of the main thread, which results in feedback to the
user just like other non-deterministic program behavior.

Pex–White Box Test Generation for .NET 145

Native Code, .NET code that is not instrumented. Pex does not moni-
tor native code, e.g. x86 instructions called through the P/Invoke mechanism
of .NET. Also, since instrumentation of managed code comes with a signif-
icant performance overhead, Pex instruments code only selectively. In both
cases, the effect is the same: constraints are lost. However, even if some meth-
ods are implemented in native code or are uninstrumented, Pex will still try
to cover the instrumented code as much as possible.

The concept of redirecting method calls to alternative substitution meth-
ods is also used sometimes to give managed alternatives to native methods,
so that Pex can determine the constraints of native methods by monitoring
the managed alternative.

Symbolic Reasoning. Pex uses an automatic constraint solver (Z3) to de-
termine which values are relevant for the test and the program-under-test.
However, the abilities of the constraint solver are, and always will be, lim-
ited. In particular, Z3 cannot reason about floating point arithmetic, and
Pex imposes a configurable memory and time consumption limit on Z3.

Language. Pex can analyze arbitrary .NET programs, written in any .NET
language. Today, the Visual Studio add-in and the test code generation only
support C#.

4 Application

Pex is integrated into Visual Studio as an add-in. The user writes parameterized
unit tests as public instance methods decorated the custom attribute PexMethod,
as shown in the following example.

[PexMethod]
public void ParameterizedTest (int i) {

if (i == 123)
throw new ArgumentException ("i");

}

Then, the user simply right-clicks the parameterized unit test, and selects the
Pex It menu item.

Pex will then launch a process in the background which analyzes the code,
executing it multiple times. The results are shown in a Pex Results window,
that lists the computed parameter values in a table for each parameterized unit
test.

146 N. Tillmann and J. de Halleux

As expected, Pex generated 2 tests to cover ParameterizedTest. The first tests
uses the “default” value 0 for an integer, and Pex records the constraint i!=123.
The negation of this constraint leads to the second test, where i==123, which
triggers the branch that throws a ArgumentNullException.

In the following example, we show that Pex can analyze unsafe managed
.NET code. We wrote the following parameterized unit test, that obtains an
unsafe pointer from a (safe) byte array, then passes the pointer to the .NET
UnmanagedMemoryStream, which is in turn given to the ResourceReader.

[PexClass]
...
public partial class ResourceReaderTest {

[PexMethod]
public unsafe void ReadEntriesFromUnmanagedMemoryStream(

[PexAssumeNotNull]byte [] data) {
fixed (byte* p = data)

using (UnmanagedMemoryStream stream =
new UnmanagedMemoryStream (p, data.Length)) {
ResourceReader reader =

new ResourceReader (stream);
readEntries (reader);

}
}

private static void readEntries (ResourceReader reader) {
int i = 0;
foreach (DictionaryEntry entry in reader) {

PexAssert .IsNotNull (entry.Key);
i++;

}
}

}

We further decorate the test with the following attributes, to suppress certain
exceptions that the documentation deems acceptable, and to enable Pex’ strict
checking of unsafe memory accesses.

[PexInjectExceptionsOnUnverifiableUnsafeMemoryAccess]
[PexAllowedException (typeof(BadImageFormatException))]
[PexAllowedException (typeof(IOException))]
[PexAllowedException (typeof(NotSupportedException))]

Pex–White Box Test Generation for .NET 147

From the parameterized unit test, Pex generates several test inputs. After
around one minute, and executing the parameterized unit tests for 576 times
with different inputs, Pex generates test-cases such as the following. (Most of
the generated test-cases represent invalid resource file, but some represent legal
resource files with one or more entries. The byte array shown here is an illegal
resource file.)

public void ReadEntriesFromUnmanagedMemoryStream_576() {
byte [] bs0 = new byte [56];
bs0[0] = (byte)206;
bs0[1] = (byte)202;
bs0[2] = (byte)239;
bs0[3] = (byte)190;
bs0[7] = (byte)64;
bs0 [12] = (byte)2;
bs0 [16] = (byte)2;
bs0 [24] = (byte)192;
bs0 [25] = (byte)203;
bs0 [26] = (byte)25;
bs0 [27] = (byte)176;
bs0 [28] = (byte)1;
bs0 [29] = (byte)145;
bs0 [30] = (byte)88;
bs0 [40] = (byte)34;
bs0 [41] = (byte)128;
bs0 [42] = (byte)132;
bs0 [43] = (byte)113;
bs0 [44] = (byte)132;
bs0 [46] = (byte)168;
bs0 [47] = (byte)5;
bs0 [48] = (byte)172;
bs0 [49] = (byte)32;
this.ReadEntriesFromUnmanagedMemoryStream(bs0);

}

Pex deduced the entire file contents from the ResourceReader implementation.
Note that the first four bytes represent a magic number which the ResourceReader

expects. The later bytes form resource entries. The following code is part of
the resource reader implementation. ReadInt32 combines four bytes to a 32-bit
integer through bitwise operations.

// Read ResourceManager header
// Check for magic number
// _store wraps the input stream
int magicNum = _store.ReadInt32 ();
if (magicNum != ResourceManager .MagicNumber)

throw new ArgumentException ("Resource file not valid!");

148 N. Tillmann and J. de Halleux

5 Evaluation

We applied Pex on a core .NET component that had already been extensively
tested over several years.

We used a version of the component which contains assertion checks that the
developers of the component embedded into the code. These checks are very
expensive, and they are removed from the retail version of the component that
is normally deployed by the users. These additional consistency checks, realized
by conditional branch instructions, greatly increase the number of potential ex-
ecution paths that must be analyzed. As a result, Pex analysis takes at least an
order of magnitude longer than it does when applied on the retail version.

We used the Pex Wizard to generate individual parameterized unit tests for
each public method of all public classes. These automatically generated unit
tests do not contain any additional assertion validation; they simply pass the
arguments through to the method-under-test. Thus, the test oracle only consists
of the assertions that are embedded in the product code, and the pattern that
certain exceptions should not be thrown by any code, e.g. access violation ex-
ceptions that indicate that an unsafe operation has corrupted the memory. In
addition, we wrote about ten parameterized unit tests by hand which exercise
common call sequences.

For example, for a method Parse that creates a data type DataType instance
by parsing a string, the Wizard generates parameterized unit tests such as the
following.

[PexMethod]
public void Parse(string s) {

DataType result = DataType .Parse(s);
PexValue .AddForValidation ("result", result);

}

The parameterized unit test calls DataType.Parse with a given string and
stores the result in a local variable. The call to PexValue.AddForValidation logs
the result of the call to Parse, and it the test suite which Pex creates will include
verification code that can be used in future regression testing to ensure that the
Parse will not change its behavior but always return the same output as when
Pex explored it.

We ran Pex on about 10 machines (different configurations, similar to P4,
2GHz, 2GB RAM) for three days; each machine was processing one class at a
time.

In total, the analysis involved more than 10,000 public methods with more
than 100,000 blocks and more than 100,000 arcs. When executing the code as
part of the analysis, Pex created a sand-box with security permissions “Internet”,
i.e. permissions that correspond to the default policy permission set suitable for
content from unknown origin, which means in particular that most operations
involving the environment, e.g. file accesses, were blocked, Starting from the
public methods, Pex achieved about 43% block coverage and 36% arc coverage.
We do not know how many blocks and arcs are actually reachable.

Pex–White Box Test Generation for .NET 149

Table 1. Automatically achieved coverage on selected classes of the core .NET com-
ponent

Because of the restricted security permissions, and the fact that Pex was
only testing one method at a time, the overall coverage numbers clearly can
be improved. However, Pex did very well on many classes which do not require
many method calls to access their functionality. Table 1 shows a selection of
classes of the core .NET component on which Pex fully automatically achieved
high block and arc coverage. Only lower bounds for the block and arc numbers
are given for proprietary reasons.

One category of errors that Pex found contains test cases that trigger rather
benign exceptions, e.g. NullReferenceException and IndexOutOfRangeException.
Another more interesting category of 17 unique errors involves the violation of
assertions which the developers wrote in the code, and the exhaustion of memory,
and other serious issues.

Most of the errors that Pex found required very carefully chosen argument val-
ues (e.g. a string of length 100 filled with particular characters), and it is unlikely
that a random test input generator would find them. While some of the errors
could be found by assertion-targetting techniques, e.g. [18], the branch conditions
that guarded the errors were usually quite complex (involving bitvector arith-
metic, indirect memory accesses) and were spread over multiple methods, and
incorporated values obtained from the environment (here, the Windows API).
It requires a dynamic analysis (to obtain the values from the environment) with
a precise symbolic abstraction of the program’s behavior to find these errors.

6 Related Work

Pex performs path-bounded model-checking of .NET programs. Pex is related
to other program model checkers, in particular JPF [2] and XRT [14] which also
operate on managed programs (Java and .NET). Both JPF and XRT have ex-
tensions for symbolic execution. However, both can only perform static symbolic
execution, and they cannot deal with stateful environment interactions. Also, in
the case of JPF, only some aspects of the program execution can be encoded

150 N. Tillmann and J. de Halleux

symbolically (linear integer arithmetic constraints), while others must always be
explored explicitly (constraints over indirect memory accesses).

The idea of symbolic execution was pioneered by [16]. Later work on dynamic
test generation, e.g. [17,18], mainly discussed the generation of test inputs to
determine whether a particular execution path or branch was feasible. While
Pex’ search strategies try to exercise individual execution paths in a particular
(heuristically chosen) sequence, the strategies are complete and will eventually
exercise all execution paths. This is important in an environment such as .NET
where the program can load new code dynamically, and not all branches and
assertions are known ahead of time.

Dynamic symbolic execution was first suggested in DART [12]. Their tool in-
struments C programs at the source code level, and it tracks linear integer arith-
metic constraints. CUTE [27] follows the approach of DART, but it can track
and reason about not only linear integer arithmetic, but also pointer aliasing
constraints. jCUTE [26] is an implementation of CUTE for Java, a managed en-
vironment without pointers. EXE [6] is another implementation of C source code
based dynamic symbolic execution, and EXE implements a number of further
improvements, including constraint caching, independent constraint optimiza-
tion, bitvector arithmetic, and tracking indirect memory accesses symbolically.
Each of these approaches is specialized for a particular source language, and
they only include certain operations in the symbolic analysis. Also, their search
order is not prioritized to achieve high coverage quickly, which forces the user
to precisely define bounds on the size of the program inputs and to perform an
exhaustive search. Pex is language independent, and it can symbolically reason
about pointer arithmetic as well as constraints from object oriented programs.
Pex search strategies aim at achieving high coverage fast without much user
annotations.

Another language agnostic tool is SAGE [13], which is used internally at Mi-
crosoft. It virtualizes a Windows process on the x86 instruction level, and it
tracks integer constraints as bitvectors. While operating at the instruction level
makes it a very general tool, this generality also comes with a high instrumen-
tation overhead which is significantly smaller for Pex.

Several improvements have been proposed recently to improve the scalability
of dynamic symbolic execution, by making it compositional [11,19], and demand-
driven [19,8]. We are working on related improvements in Pex [1] with encour-
aging early results.

Randoop [23] is a tool that generates new test-cases by composing previously
found test-case fragments, supplying random input data. Randoop was also used
internally in Microsoft to test core .NET components. While Pex and Randoop
found some of the same errors, the error findings were generally different in that
Randoop found errors that needed two or more method calls, while most of the
errors that Pex found involved just a single method calls, but with very carefully
chosen argument values.

The commercial tool AgitarOne from Agitar [4] generates test-cases for Java
by analyzing the source code, using information about program invariants

Pex–White Box Test Generation for .NET 151

obtained in a way similar to [9]. Similar to idea of parameterized unit test-
ing [25], work building on Agitar proposes a concept called theories [25] to write
and explore general test-cases.

7 Conclusion

Pex [24] is an automatic white-box test generation tool for .NET that explores
the code-under test by dynamic symbolic execution. Pex analyzes safe, man-
aged code, and it can validate unsafe memory accesses on individual execution
paths. We applied Pex on a extremely well tested core .NET component, and
found errors, including a serious issue. The automatically achieved results are
encouraging. However, the combined coverage of the test-cases that Pex gener-
ated fully automatically clearly show that there is room for future research, e.g.
leveraging information about the structure of the program to construct method
call sequences automatically.

Acknowledgements

We would like to thank Wolfram Schulte for his support, our interns Thorsten
Schuett, Christoph Csallner and Saswat Anand for their work to improve Pex,
Nikolaj Bjorner and Leonardo de Moura for Z3, the developers and testers of the
core .NET component for their support and advice, as well as Patrice Godefroid,
and the anonymous reviewers for their comments.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. Technical Report MSR-TR-2007-138, Microsoft Research, Redmond,
WA (October 2007)

2. Anand, S., Pasareanu, C.S., Visser, W.: Jpf-se: A symbolic execution extension to
java pathfinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 134–138. Springer, Heidelberg (2007)

3. Bjorner, N., de Moura, L.: Z3: An efficient SMT solver (2007),
http://research.microsoft.com/projects/Z3

4. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing. In: ISSTA 2006:
Proceedings of the 2006 international symposium on Software testing and analysis,
pp. 169–180. ACM Press, New York (2006)

5. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: DAC 1990: Proceedings of the 27th ACM/IEEE conference on Design
automation, pp. 40–45. ACM Press, New York (1990)

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. In: CCS 2006: Proceedings of the 13th ACM
conference on Computer and communications security, pp. 322–335. ACM Press,
New York (2006)

http://research.microsoft.com/projects/Z3

152 N. Tillmann and J. de Halleux

7. Csallner, C., Tillmann, N., Smaragdakis, Y.: Dysy: Dynamic symbolic execution
for invariant inference. Technical Report MSR-TR-2007-151, Microsoft Research,
Redmond, WA (November 2007)

8. Engler, D., Dunbar, D.: Under-constrained execution: making automatic code de-
struction easy and scalable. In: ISSTA 2007: Proceedings of the 2007 international
symposium on Software testing and analysis, pp. 1–4. ACM, New York (2007)

9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming (2007)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proc. the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pp. 234–245. ACM Press,
New York (2002)

11. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007: Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 47–54. ACM Press, New York (2007)

12. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
SIGPLAN Notices 40(6), 213–223 (2005)

13. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. Tech-
nical Report MSR-TR-2007-58, Microsoft Research, Redmond, WA (May 2007)

14. Grieskamp, W., Tillmann, N., Schulte, W.: XRT - Exploring Runtime for .NET
- Architecture and Applications. In: SoftMC 2005: Workshop on Software Model
Checking, July 2005. Electronic Notes in Theoretical Computer Science (2005)

15. E. International. Standard ECMA-335, Common Language Infrastructure (CLI)
(June 2006)

16. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

17. Korel, B.: A dynamic approach of test data generation. In: IEEE Conference On
Software Maintenance, November 1990, pp. 311–317 (1990)

18. Korel, B., Al-Yami, A.M.: Assertion-oriented automated test data generation. In:
Proc. the 18th international conference on Software engineering, pp. 71–80. IEEE
Computer Society, Los Alamitos (1996)

19. Majumdar, R., Sen, K.: Latest: Lazy dynamic test input generation. Technical
Report UCB/EECS-2007-36, EECS Department, University of California, Berkeley
(Mar 2007)

20. Two, M.C., Poole, C., Cansdale, J., Feldman, G., Newkirk, J.W., Vorontsov, A.A.,
Craig, P.A.: NUnit, http://www.nunit.org/

21. Microsoft. Net framework general reference - profiling (unmanaged api reference),
http://msdn2.microsoft.com/en-us/library/ms404386.aspx

22. Microsoft. Visual Studio Team System, Team Edition for Testers,
http://msdn2.microsoft.com/en-us/vsts2008/products/bb933754.aspx

23. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE 2007, Proceedings of the 29th International Conference on
Software Engineering, Minneapolis, MN, USA, May 23–25 (2007)

24. Pex development team. Pex (2007), http://research.microsoft.com/Pex

25. Saff, D., Boshernitsan, M., Ernst, M.D.: Theories in practice: Easy-to-write speci-
fications that catch bugs. Technical Report MIT-CSAIL-TR-2008-002, MIT Com-
puter Science and Artificial Intelligence Laboratory, Cambridge, MA, January 14
(2008)

http://www.nunit.org/
http://msdn2.microsoft.com/en-us/library/ms404386.aspx
http://msdn2.microsoft.com/en-us/vsts2008/products/bb933754.aspx
http://research.microsoft.com/Pex

Pex–White Box Test Generation for .NET 153

26. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

27. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:
ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering, pp. 263–272. ACM Press, New York (2005)

28. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 253–262.
ACM, New York (2005)

29. Tillmann, N., Schulte, W.: Unit tests reloaded: Parameterized unit testing with
symbolic execution. IEEE Software 23(4), 38–47 (2006)

Non-termination Checking for

Imperative Programs

Helga Velroyen1 and Philipp Rümmer2

1 Department of Computer Science
RWTH Aachen University of Technology

helga.velroyen@rwth-aachen.de
2 Department of Computer Science and Engineering,

Chalmers University of Technology and Göteborg University
philipp@chalmers.se

Abstract. While termination checking tailored to real-world library
code or frameworks has received ever-increasing attention during the last
years, the complementary question of disproving termination properties
as a means of debugging has largely been ignored so far. We present an
approach to automatic non-termination checking that relates to termi-
nation checking in the same way as symbolic testing does to program
verification. Our method is based on the automated generation of invari-
ants that show that terminating states of a program are unreachable from
certain initial states. Such initial states are identified using constraint-
solving techniques. The method is fully implemented on top of a program
verification system and available for download. We give an empirical eval-
uation of the approach using a collection of non-terminating example
programs.

1 Introduction

Termination properties of programs are crucial for liveness and safety: a piece
of software which does not terminate can have vast consequences, especially
when employed in critical environments or wide-spread. The latter concerns in
particular library code or frameworks, whose specific use is often unknown at
the time of development. Non-termination bugs can be very subtle and hide long
before they take effect in productivity situations.

Although the concept of formally proving termination properties has been
known and investigated for a long time, the last years have seen intensified re-
search on how to check the termination of real-world code [1,2]. During the same
time, however, the complementary field of showing the potential non-termination
of programs as a means of debugging has largely been ignored. This is a surpris-
ing situation, because programs under development are prone to contain defects.
In this context, direct attempts to find those bugs might be more successful and
more useful than to learn from failed correctness or termination proofs.

Traditional dynamic techniques of testing program behavior by means of con-
crete execution are not adequate to show non-termination (they can nevertheless

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 154–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Non-termination Checking for Imperative Programs 155

provide valuable hints). As a consequence, although the purpose of non-
termination analysis is more related to testing than to program verification, in
most cases the usage of symbolic reasoning cannot be avoided. In the present pa-
per, we introduce an approach to automatic non-termination checking that relates
to termination checking in the same way as symbolic testing does to program ver-
ification. The method has been implemented on top of a general-purpose program
verification system. Experiments using a database of non-terminating programs
indicate that it can be a useful tool for detecting termination defects early during
software development.

Showing the non-termination of a program consists of two parts: (i) to prove
that a potential loop in a program is reachable from some initial state, and
(ii) to prove that the potential loop can indeed cause non-termination. We use
constraint solving techniques to achieve the first part, following the approach de-
scribed in [3]. For the second part, we introduce an algorithm to synthesise invari-
ants that show that the found loop is never exited and that terminating states of
the program are therefore unreachable. Our approach is based on two main tech-
niques, a template method for generating invariants (together with constraint
solving) and refinement (strengthening) of invariants based on counterexamples.
Because our experiments show that invariants for proving non-termination are
typically much smaller than invariants for proving partial correctness, we believe
that this yields a practical procedure for constructing non-termination proofs.

The paper is organised as follows: In Sect. 2 we define the programming lan-
guage that is analysed in the whole paper. Sect. 3 introduces the logic and the
calculus that we use to reason about programs, which is the basis for an effective
algorithm in Sect. 4. An empirical evaluation of our approach is given in Sect. 5.
Finally, we list related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [4] for an introduction. For sake of simplicity, all con-
siderations of this paper are done in the context of a simple while-language that
operates on the (infinite) domain of integers. The generalisation to other im-
perative languages is mostly straightforward, and, in our experience, occurring
problems tend to be orthogonal to the task of proving non-termination. More
details are given in [5,3].

In order to introduce the while-language, we first assume a fixed vocabulary Σ
of functions and predicates (with fixed arity) that describe the native side-effect-
free operations that are available, as well as a fixed set Vp of program variables.
The set Σ is supposed to contain at least literals and the standard operations
on integers (0, 1, −1, . . . , +, −, ·, =, <, ≤). Ground terms, ground formulae and
programs are then inductively defined by the following grammars:

156 H. Velroyen and P. Rümmer

tg ::= v | f(tg, . . . , tg)
φg ::= true | false | φg ∧ φg | ¬φg | · · · | p(tg, . . . , tg)
α ::= α ; . . . ; α | v = tg | �� (φg) α ���� α | ����� (φg) α

where f ∈ Σ ranges over functions, p ∈ Σ over predicates and v ∈ Vp over pro-
gram variables.

Semantics of Programs. Because only the integers are considered as domain, a
structure is a pair S = (�, I) consisting of the set � of integers and an interpre-
tation I with I(f) : �n → � if f ∈ Σ is a function of arity n and I(p) ⊆ �

n if
p ∈ Σ is a predicate of arity n. Only those structures are considered in which
the standard integer operations from above (like 0, 1, −1, +, . . .) have their usual
meaning. A program variable assignment is a mapping γ : Vp → �. The space of
all program variable assignments is denoted by PA = Vp → �. While-programs α
are evaluated in structures S and denote partial mappings [[α]]S : PA ⇀ PA from
program variable assignments to program variable assignments:

[[α]]S(γ) =

{
γ′ α terminates in state γ′ when started in γ

⊥ α does not terminate when started in γ

Given an evaluation function valS,γ for ground terms and formulae, which is
defined as is common for first-order logic (cf. [4]), the concrete definition of [[α]]S

follows the lines of denotational semantics (for instance, [6]).

3 Proving Non-termination: The Calculus Level

We introduce our approach to non-termination detection in two parts: in this
section, we describe the logic and the calculus to reason about programs. Based
on this declarative framework, Sect. 4 defines an algorithm (a proof procedure)
for automatically detecting non-termination.

Dynamic Logic for the While-Language (WhileDL). First-order dynamic
logic (DL) [7] is a multi-modal extension of first-order predicate logic, in which
modal operators are labelled with programs. Most importantly, given a pro-
gram α and a formula φ, a box-formula [α] φ expresses that φ holds in each
final state of α. This paper uses a version of dynamic logic for the simple while-
language [7] that is enriched with an explicit operator for simultaneous sub-
stitutions called updates [8, Sect. 3]. Updates allow us to present some of the
techniques of this papers in a simpler way, but also simplify the generalisation
to more involved languages like Java [5,3,8].

We assume the same vocabulary Σ and the same set Vp of program variables
as in Sect. 2, but in addition we define a disjoint set Vl of logical variables that
can occur in formulae and terms (outside of programs). Because some of our rules
need to introduce fresh function symbols, we assume that Σ contains infinitely

Non-termination Checking for Imperative Programs 157

many functions for each arity n. Extending the grammar from Sect. 2, arbitrary
terms, formulae and updates are then defined by:

t ::= tg | x | f(t, . . . , t) | { U } t

φ ::= φg | φ ∧ φ | ¬φ | · · · | p(t, . . . , t) | [α] φ | { U } φ

U ::= v := t | U, . . . , U

where f ∈ Σ ranges over functions, p ∈ Σ over predicates, x ∈ Vl over logical
variables and v ∈ Vp over program variables.

In order to define the semantics of terms, formulae and updates, besides struc-
tures S = (�, I) and program variable assignments γ ∈ PA we also need logical
variable assignments β : Vl → �. The denotation [[U]]S,β : PA → PA of an up-
date U is a total operation on program variable assignments:

[[v1 := t1, . . . , vk := tk]]S,β(γ)(w) =

⎧
⎪⎨

⎪⎩

valS,β,γ(ti) w = vi and
w �∈ {vi+1, . . . , vk}

γ(w) w �∈ {v1, . . . , vk}

This means that the assignments of an update are executed in parallel, and
that assignments that syntactically occur later can override the effects of earlier
assignments (vj := tj will override vi := ti for vi = vj and j > i).

The evaluation valS,β,γ of terms and formulae is mostly defined as it is com-
mon for first-order predicate logic. Formulae are mapped into a Boolean domain,
where tt stands for semantic truth. The cases for programs and updates are:

valS,β,γ([α] φ) =

{
valS,β,[[α]]S(γ)(φ) if [[α]]S(γ) is defined
tt otherwise

valS,β,γ({ U } φ) = valS,β,[[U]]S,β(γ)(φ)

We interpret free logical variables x ∈ Vl existentially: a formula φ is valid iff for
each structure S and each program variable assignment γ ∈ PA there is a variable
assignment β : Vl → D such that valS,β,γ(φ) = tt. Likewise, a sequent Γ 	 Δ is
called valid iff

∧
Γ →

∨
Δ is valid. Free variables are used to express symbolic

program inputs and as parameters in loop invariants and serve as an interface
to constraint solving (see below for more details).

Characterisation of Non-Termination. Because box-formulae [α] φ are triv-
ially rendered true by a diverging program α, we can express non-termination by
asserting false as post-condition: [α] false. This means that, given a structure S,
valS,γ([α] false) = tt holds for exactly those initial states γ ∈ PA for which α
diverges.

In order to express non-termination for some arbitrary initial state, it is neces-
sary to quantify the variables occurring in α existentially, following the approach
from [3]. For the while-language, this is done by prefixing the formula from above
with an update that assigns arbitrary values to all program variables in α:

{ v1 := x1, . . . , vn := xn } [α] false (1)

158 H. Velroyen and P. Rümmer

where v1, . . . , vn ∈ Vp are the variables occurring in α and x1, . . . , xn ∈ Vl are
fresh logical variables. (1) is valid iff there are initial states from which α diverges.

A Sequent Calculus for WhileDL. To reason formally about the non-
termination of programs, we introduce a Gentzen-style sequent calculus for
WhileDL that follows closely the calculi in [3,8]. Fig. 1 contains the most impor-
tant calculus rules, which can be categorised as program-independent first-order
rules (the upper part of the figure) and symbolic execution rules.

The rule Assign turns assignments into updates, which subsequently can be
merged with the former preceding update U and simplified. The simplification
and application of updates is performed by the rewriting rules in Fig. 2, which
propagate updates in formulae or terms downwards until they can be applied to
program variables like substitutions.

In If, a case analysis for an if-statement is performed by splitting on the
branch predicate ψ evaluated in the current program state U . The invariant
rule While is a simplified version of the rule for Java defined in [8, Chap. 3].
In While, the erasure of side formulae is avoided with the help of anonymising
updates A1, A2 that assign unspecified values to all variables that can be modified
by the loop body α. More formally, given that (i) v1, . . . , vn ∈ Vp are the variables
that occur as left-hand sides of assignments in α, that (ii) x1, . . . , xm ∈ Vl are
the logical variables that occur in U , φ, or Inv , and that (iii) f1, . . . , fn are fresh
function symbols, we say that the update

v1 := f1(x1, . . . , xm), . . . , vn := fn(x1, . . . , xm)

is a fresh anonymising update for α with respect to U, φ, Inv . Note, that we need
to inject the logical variables x1, . . . , xm as arguments of the functions f1, . . . , fn

for exactly the same reasons as in the standard Skolemisation rule (cf. [4]).
Finally, theory rules are necessary to handle equality, integers, etc. in the

calculus, we refer the reader to [9] for more details. An example proof using the
WhileDL calculus is shown below.

When inspecting the calculus rules, it can be observed that all rules but
While are local equivalence transformations: for all structures, program variable
assignments and logical variable assignments, the conclusion of a rule holds iff
all premisses hold. This property is important for us, because it implies that
countermodels of an open goal are also countermodels of the initial conjecture
(unless While has been applied). In Sect. 4, we use counterexamples that were
extracted from open proof goals to refine invariant candidates.

Incremental Closure of Proofs. In order to close a proof tree that contains
free logical variables, we have to show that the variables can be given values
(depending on the considered structure) such that all remaining goals are turned
into obviously valid sequents. We apply the idea of incremental closure [4,10]
together with the arithmetic constraint language from [3, Sect. 4] to check the
existence of such values. The rules in Fig. 3 are responsible for introducing closure

Non-termination Checking for Imperative Programs 159

∗
Γ � true , Δ

true-right
Γ � Δ

Γ, true � Δ
true-left

Γ � φ,Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
∧-right

Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
∧-left

Γ, φ � Δ

Γ � ¬φ, Δ
¬-right

Γ � φ, Δ

Γ, ¬φ � Δ
¬-left

· · ·
Γ � { U } φ, Δ

Γ � { U } [] φ, Δ
Skip

Γ � { U } { v := t } [. . .] φ, Δ

Γ � { U } [v = t ; . . .] φ, Δ
Assign

Γ � { U } (ψ → [α1 ; . . .] φ), Δ Γ � { U } (¬ψ → [α2 ; . . .] φ), Δ

Γ � { U } [�� (ψ) α1 ���� α2 ; . . .] φ, Δ
If

Γ � { U } Inv , Δ
Γ � { U } { A1 } (Inv ∧ ψ → [α] Inv), Δ
Γ � { U } { A2 } (Inv ∧ ¬ψ → [. . .] φ), Δ

Γ � { U } [����� (ψ) α ; . . .] φ, Δ
While

(A1, A2 are fresh anonymising updates for α w.r.t. U, φ, Inv)

Fig. 1. Sequent calculus for WhileDL. In the last four rules, the update { U } can also
be empty and disappear.

{ v1 := t1, . . . , vk := tk } vi → ti if vi �∈ {vi+1, . . . , vk}
{ v1 := t1, . . . , vk := tk } t → t if v1, . . . , vk do not occur in t

{ U } f(t1, . . . , tn) → f({ U } t1, . . . , { U } tn)

{ U } p(t1, . . . , tn) → p({U } t1, . . . , { U } tn)

{ U } ¬φ → ¬{ U } φ

{ U } (φ ∧ ψ) → { U } φ ∧ { U } ψ

{ U } { v1 := t1, . . . , vk := tk } φ → { U, v1 := { U } t1, . . . , vk := { U } tk } φ

{ . . . , v := s, . . . , v := t, . . . } φ → { . . . , v := t, . . . } φ

Fig. 2. The main application rules for updates in WhileDL. Further rules to simplify
updates can be formulated (cf. [8, Chap. 3]), but are not shown here.

[s = t]

Γ � s = t, Δ
=-right

[s ≤ t]

Γ � s ≤ t, Δ
≤-right

[s ≥ t]

Γ � s ≥ t, Δ
≥-right

[s �= t]

Γ, s = t � Δ
=-left

[s > t]

Γ, s ≤ t � Δ
≤-left

[s < t]

Γ, s ≥ t � Δ
≥-left

Fig. 3. Closure rules for the WhileDL sequent calculus

160 H. Velroyen and P. Rümmer

constraints for proof goals. If it is possible, in this way, to find compatible closure
constraints for all proof goals (i.e., the conjunction of the constraints is valid),
then it is sound to close the proof.

Example. We illustrate the usage of the sequent calculus by proving the non-
termination of the following program:

Lcm =

⎧
⎪⎪⎨

⎪⎪⎩

a = a0 ; b = b0 ;
����� (a �= b) {

�� (a > b) b = b + b0 ���� a = a + a0
}

In case of termination, the post-value of a and b is the least common multiple
of the two integers a0, b0. The program fails, however, to handle negative inputs
correctly: if the signs of a0 and b0 are different, for instance, the program does
not terminate. To prove this formally, we instantiate (1) with Lcm and construct
a proof tree (Fig. 4).

The only step in the course of the proof that requires creativity is the choice
of the formula Inv that is used as invariant when applying the rule While (our
technique for synthesising such formulae is described in the next section). In
terms of the program execution, Inv has to describe a set of program states
that (i) is entered when Lcm reaches the while-loop, (ii) is not left during the
execution of the loop, and (iii) does not contain any states in which the loop
guard becomes false. We chose a < b as invariant in this example, but similar
proofs can be given for the invariants a < 0 ∧ b > 0 or a �= b. In all cases, the
technique of incremental closure has to be used to determine some initial state
(i.e., values of the variables a0, b0) for which the chosen formula Inv actually
is an invariant and the proof can be closed. The closing constraint in Fig. 4 is
[xa < 1 ∧ xa < xb], which means that we have proven the non-termination for
initial states (a0, b0) like (0, 1), (0, 2), (−10, −5), etc.

4 Automatically Detecting Non-termination

In our work, we developed an algorithm to identify non-terminating programs au-
tomatically. It has two components, an invariant generator and a theorem prover.
The theorem prover is used to prove formulae which state the non-termination of
a program. This done by construction of proof trees using the calculus rules and
incremental closure, described in Sect. 3. The other component, the invariant
generator, is used to provide and refine invariants for the theorem prover. It was
used to construct the invariant a < b from the previous section in a systematic
way.

The idea of the algorithm is to construct a non-termination proof as described
in the preceding section. The essential part of a non-termination proof is the
invariant which is used in the application of the While rule. Our algorithm tries
to find this invariant by repeatedly constructing proof attempts. In each iteration
a different invariant is used, starting with the formula true, representing that the

Non-termination Checking for Imperative Programs 161

[xa < xb]

xa ≥ xb � ≥-left

� xa < xb
(∗)

� { U0, a := xa, b := xb } a < b
∗→ Inv. Preservation Inv. Usage

� { U0, a := xa, b := xb } [����� (a �= b) β] false
While

� { U0, a := xa, b := x2 } [b = b0 ; ����� (a �= b) β] false Assign,
∗→

� { U0, a := x1, b := x2 } { a := a0 } [b = b0 ; ����� (a �= b) β] false
∗→

� { a0 := xa, b0 := xb, a := x1, b := x2 } [a = a0 ; b = b0 ; . . .] false
Assign

� { a0 := xa, b0 := xb, a := x1, b := x2 } [Lcm] false

∗.... (∗)

[xa < 1]

fa ≤ fb − 1, fa ≥ fb − xa, xa ≥ 1 � ≥-left

fa ≤ fb − 1 � fa + xa < fb
(∗)

fa ≤ fb − 1 � { U0, a := fa + xa, b := fb } [] a < b
Skip,

∗→

fa ≤ fb − 1 � { U0, a := fa, b := fb } [a = a + a0] a < b
Assign,

∗→

fa ≤ fb − 1 � fa �> fb → { U0, a := fa, b := fb } [a = a + a0] a < b
(∗)

fa ≤ fb − 1 � { U0, a := fa, b := fb } (a �> b → [a = a + a0] a < b)
∗→

fa ≤ fb − 1 � { U0, a := fa, b := fb } [�� (a > b) . . . ���� . . .] a < b
If

� fa < fb ∧ fa �= fb → { U0, a := fa, b := fb } [β] a < b
(∗)

� { U0, a := xa, b := xb } { a := fa, b := fb } (a < b ∧ a �= b → [β] a < b)
∗→

Inv. Preservation

∗
� ga < gb ∧ ga = gb → { U0, a := ga, b := gb } [] false

(∗)

� { U0, a := xa, b := xb } { a := ga, b := gb } (a < b ∧ a = b → [] false)
∗→

Inv. Usage

Fig. 4. Proof for the (potential) non-termination of the program Lcm using the in-
variant a < b. The proof can be closed with the constraint [xa < 1 ∧ xa < xb], which
describes a set of initial states that causes Lcm to diverge. We write β for the body of
the while-loop, fa, fb, ga, gb as abbreviation for the Skolem terms fa(xa, xb), fb(xa, xb),
ga(xa, xb), gb(xa, xb), and U0 as abbreviation for the update a0 := xa, b0 := xb. Rewrit-
ing steps to apply updates are denoted by

∗→ , whereas (∗) means that rules for propo-
sitional and arithmetic reasoning are applied which are not shown in detail.

It. cur. Inv. Open goals Queue after step 5 of algorithm

1 true a = b � b > a, b < a, b < Ub, a < Ua, b > Lb, a > La, a �= b
2 b > a none b < a, b < Ub, . . .

Fig. 5. Application of the algorithm on Lcm. Technically, a and b in the open goals
are Skolem terms like fa(xa, xb) in Fig. 4, which have to be translated back to obtain
invariants in terms of the program variables. In iteration 2, the non-termination proof
can be closed with the constraint [xa < xb ∧ xa < 1]. The result expresses that Lcm

does not terminate if the initial value of a0 is less than that of b0 and not positive.

162 H. Velroyen and P. Rümmer

prover has no knowledge about the invariant at start up. After each failed proof
attempt, the incomplete proof tree is examined. The retrieved information from
this examination is then used to refine the invariant. There are several ways of
refinement of which one uses template variables for the invariants.

A positive result of the algorithm is a successful non-termination proof of the
program together with a description of a set of input values for which the loop
of the program runs forever.

Note on Nested Loops. The algorithm as it is described here is only applicable
to single, unnested loops. As it is always possible to transform nested loops into
unnested ones, this is no real restriction. Besides, in [5] we describe how our
algorithm can be adapted so that it directly works on nested loops.

Outline of the Algorithm. Let α be the program whose termination is in
question. The input of the algorithm is α’s source code, which is inserted into a
WhileDL formula φ (formula (1) in Sect. 3) which states that there are inputs
for which α does not terminate.

Initialisation

1. The formula φ is handed over to the theorem prover. The proof procedure
is invoked and constructs a proof tree in which the program is symbolically
executed until the execution reaches the loop.

Iteration

2. The proof procedure applies the invariant rule While (Fig. 1). The invariant
Invcur which is used in the invariant rule’s application is chosen from a queue
of invariants. Initially there is only Invcur ≡ true in the queue.

3. The proof procedure keeps on constructing the proof as far as possible with-
out human interaction.

4. If the proof procedure can close the proof, the algorithm terminates with the
result that the program does not terminate. If the proof cannot be closed,
the open goals of the proof are extracted and handed over to the invariant
generator.

5. The invariant generator inspects the formulae of the open goals. The ob-
tained information is used to refine the invariant candidate to create one or
more new candidates, which are then added to the queue.

The algorithm repeats step 2 to 5 iteratively, each time using one of the
invariant candidates from the invariant queue. The iterations are carried out
until one of these events occurs: the proof can be closed with the help of the
invariant candidate, the algorithm runs out of new invariant candidates or a
maximum number of iterations is reached. In case of a successful termination
of the algorithm, it outputs the invariant used for the final proof, together with
the (consistent) closing constraint.

There are three parts of step 5 of the algorithm that we like to describe in
more detail. The first is the actual creation of the invariants.

Non-termination Checking for Imperative Programs 163

Invariant Creation. There are different methods to create new invariants from
the open goals of failed proofs. Assume that we obtained the open goal

φ1, . . . , φn 	 ψ1, . . . ψm

where φi and ψi are WhileDL-formulae. Given such an open goal, the invariant
generator creates invariant fragments ρ which are conjunctively added to the
invariant Invcur which was used in the current iteration to obtain a new invari-
ant Invnew = Invcur ∧ ρ. The invariant fragments are created by the following
operations:

– Add. A formula ψi in the succedent states a situation in which there is a
problem with the non-termination proof when ψi does not hold. Most often
that means that in this situation the loop actually terminates. We exclude
this situation by setting ρ = ψi.

– NegAdd. A formula φi in the antecedent means that there is a problem
with the non-termination in the situation where φi holds. Here, the same
idea applies as for formulae in the succedent, but in this case we have to
negate it before we add it to the old invariant, which means ρ = ¬φi.

– Ineq. In case a formula φi of the antecedent is of form φi ≡ a = b, we do not
only add the negation as in negAndAdd, but an inequality. That means
from a = b we obtain two fragments ρ1 ≡ a ≥ b and ρ2 ≡ a ≤ b, yielding
two different new invariants.

– IneqVar. Often it is useful to express that there are upper or lower bounds
for an expression rather than specifically setting one like in Ineq. This is
done through the introduction of free logical variables. Those variables stand
for particular but not yet specified values. For each term in the open goal, we
provide two new variables U and L, one for the upper and one for the lower
bound. Thus, for each term tk occurring in one φi, we obtain two fragments
ρu

k ≡ tk ≤ Uk and ρl
k ≡ tk ≥ Lk. The values for the new variables are

estimated by the constraint solver of the proof procedure.

The latter two creation methods are of course only applicable if a, b and tk
are expressions of an ordered type, in our case integers.

Invariant Filtering. In the process of invariant creation, sometimes invariant
candidates are created that are not helpful in the search of a non-termination
invariant. This is due to the fact that these methods are applied “blindly” with-
out actually examining the old invariant candidate. Therefore, after the creation
of invariants in step 5 of the algorithm, we filter out those candidates which are
obviously useless:

– Inconsistent Invariant. A newly created invariant candidate can be equiv-
alent to the formula false. Because the first property of non-termination
invariants is that the invariant must hold before the loop execution, it is
dismissed.

164 H. Velroyen and P. Rümmer

– Equivalence to Previous Invariants. A new invariant candidate can be equiv-
alent to a candidate that was already created and/or used in an earlier iter-
ation. Dismissal of these candidates avoid unnecessary calculations and thus
save resources.

– Impossible Closure of the Init-branch. The application of the invariant rule
makes the proof branch into three branches. The first branch proves that the
invariant holds when the loop is reached in the execution of the program. In
the refinement process, invariant candidates might be created that do not
hold in the beginning of the loop, even if they are satisfiable in general. Once
we have created an invariant candidate which prevents the first branch from
closing, it does not make sense to refine any further: refinement would only
strengthen the candidate even more.1

– Complexity. For performance reasons, we set a limit on the complexity of
formulae to keep the runtime at a reasonable level.

Invariant Scoring. In each iteration of the algorithm, when the invariant can-
didates are created and filtered in step 5 still a lot of invariants can remain. In
order to traverse the search space of invariants in a reasonable way, we have
to queue invariants according to their probable usefulness for non-termination
proofs.

We estimate this usefulness by several criteria and express it in a score, which
is a real number between 0 and 1. The lower the score is, the more the invariant
is preferred in the queue. The score is calculated as a weighted average of scores
for each of the following criteria.

– Complexity. In order to find the most general description of a set of critical
inputs, we prefer simple invariants to complex ones. The complexity is mea-
sured in both the term depth and the number of operators of the invariant.

– Existence of Free Variables. The creation method IneqVar is a strong tool
(and sometimes the only effective one) to find the desired invariant. The
problem with free variables is that in cases where they do not lead to a
closed proof, they tend to lead to even bigger open proofs. It is reasonable to
prefer invariant candidates that do not contain free variables to those who do
in order to keep the number of newly created candidates as low as possible.

– Multiple Occurrence of Formulae. In an open proof, sometimes the same
formulae occur in several open goals. We prefer invariant candidates made
from those formulae to others, because if the candidate makes the algorithm
close branches, it will close several branches in the same proof.

– Reoccurring Formulae. Formulae which occurred in open proofs in several it-
erations of the algorithm might be suitable candidates for the next invariant,
because they hint to situations where the non-termination proof repeatedly
failed.

1 The filtering of inconsistent invariants is subsumed in this filter. We kept it in the list
of filters, because checking for inconsistency is easier than for closure of the initial
branch. So, for performance reasons it is useful to first check only for consistency
before examining the closability of the first branch.

Non-termination Checking for Imperative Programs 165

– Proof Size. We presume that the smaller an open proof is (measured in the
number of open goals) the closer it is to being closed. Therefore we prefer
formulae which come from small open proofs to those from big open proofs.

Experiments have shown that the choice and weighting of the criteria is ex-
tremely important for the search in the space of invariants. In our work, we ran
several experiments to test the impact of different heuristics, the results of which
are given in Sect. 5 and [5].

Examples. We apply our algorithm to the example programs Fib and Lcm, of
which the latter one was introduced in Sect. 3 already. For the sake of simplicity,
we assume that for scoring of the invariants only the criteria of complexity is
applied.

Example Lcm. Fig. 5 shows how the algorithm works on Lcm. In this case all
presented creation methods are used.

Example Fib. Given a Fibonacci number n as input, Fib calculates how many
calculation steps are necessary in the series of Fibonacci numbers to reach n. The
result is stored in variable c. In case n is not a Fibonacci number, the program
does not terminate.

Fib =

⎧
⎪⎪⎨

⎪⎪⎩

i = 0 ; j = 1 ; t = 0 ; c = 2 ;
����� (j �= n) {

t = j + i ; i = j ; j = t ; c = c + 1
}

In contrast to Lcm, the algorithm needs several refinement steps (Fig. 6) to
prove the non-termination of Fib. The input variable n is associated with the
free logical variable xn. This time, we used only the creation methods Add,
NegAdd, Ineq, together with the complexity scoring criterion. We abstained
from showing the creation method IneqVar, because it increases the number of
necessary iterations too much to be shown here. However, we did run the same
experiment with IneqVar and will present the results in the following section.

Properties of the algorithm. We would like to have a closer look at the
properties of the algorithm which we presented here.

– Soundness. The algorithm is sound for non-termination: it will never iden-
tify a terminating program as non-terminating. This is an immediate conse-
quence of the soundness of the calculus from Sect. 3, because non-termination
is only reported if it was possible to construct a proof for it. Applied to a
terminating program, the algorithm will fail to find such a proof and will
output that it was not able to prove non-termination.

– Incompleteness. Unfortunately, but expectedly, both our calculus and the
algorithm are not complete for non-termination: there are programs that

166 H. Velroyen and P. Rümmer

do not terminate for some inputs, but there is no proof of this fact in the
calculus from Sect. 3. This is implied by the soundness, because the set of
programs that do not terminate for some inputs is not recursively enumer-
able.2 Because the algorithm is based on heuristics, it might also fail to find
existing non-termination proofs for a program, of course.

– Automation. The algorithm works fully automatic, in the sense that no man-
ual “human” actions are necessary to obtain the results.

– Determinism. The algorithm is deterministic, because for the same input it
always produces the same results. The indeterministic calculus which forms
the base of the prover is made deterministic by choice of heuristics and
prioritisation.

– Termination. Our algorithm itself always terminates. This is ensured by
setting an upper limit for the number of iterations, and by limiting the size
of proofs in the calculus from Sect. 3 that are constructed. Of course these
limits have to be chosen carefully, because the lower they are the fewer non-
terminating programs can be identified.

5 Experiments

We implemented the algorithm, which we presented in Sect. 4 in particular we
wrote the part of the invariant generator and used the software KeY [8] as the-
orem prover. Both are written in Java. Since there was no publicly available
standardised example set of non-terminating programs, we built up one to esti-
mate the quality of our approach and test different heuristics.

Example Set. Our example set consists of 55 programs, of which 53 are known to
be non-terminating for all or some input values, one whose termination behavior
is not fully known and one which is terminating. All programs are written in a
fragment in Java, which captures the functionality of the While language which
we described in Sect. 2. They have between one and five variables and up to 25
lines of code. We chose them either because they represent typical programming
errors or because they reveal very tricky non-termination behavior.

Results of the Experiments. We tested different settings concerning creation and
scoring of invariants in several experiments [5]. Our software could solve 41 of
the 55 examples automatically, but not more than 37 with one setting. This fact
shows how sensitive the algorithm’s heuristics are.

Some of the experiments were used to estimate the usefulness of the different
creation methods of Sect. 4, in particular the method IneqVar. Experiments
who included free logical variables as invariant templates could solve about 20%
more problems than those who did not. Free variables are obviously a strong tool
(and sometimes the only one) which leads to successful non-termination proofs.
Unfortunately, they increase the complexity of proofs in case they do not lead
2 Note that the set of programs that terminate for all possible inputs is not recursively

enumerable either.

Non-termination Checking for Imperative Programs 167

It. cur. Inv. Open goals

1 Inv1 ≡ true j = x �
2 Inv2 ≡ j > x x ≥ 1 � , j ≤ x − i, i ≤ −1, j ≥ 1 + x �
3 Inv3 ≡ j < x x ≤ 1 � , i ≥ 1, j ≥ x − i, j ≤ −x �
4 Inv4 ≡ j �= x x = 1 � , j = x − i, i = 0 �
5 Inv5 ≡ j > x ∧ x < 1 x ≥ 1 � , j ≤ x − i, x ≤ 0, i ≤ −1, j ≥ 1 + x �
6 Inv6 ≡ j > x ∧ x > −1 none

The next invariants to be tried:

Inv7 ≡ j < x ∧ x > 1 Inv14 ≡ j �= x ∧ j > x − i
Inv8 ≡ j < x ∧ i < 1 Inv15 ≡ j > x ∧ x < 1 ∧ x > 0
Inv9 ≡ j �= x ∧ i = 0 Inv16 ≡ j > x ∧ j > x − i
Inv10 ≡ j �= x ∧ x > 1 Inv17 ≡ j < x ∧ j < x − i
Inv11 ≡ j �= x ∧ x < 1 Inv18 ≡ j �= x ∧ j �= x − i
Inv12 ≡ j �= x ∧ x �= 1 Inv19 ≡ j > x ∧ x < 1 ∧ j > x − i
Inv13 ≡ j > x ∧ x < 1 ∧ i > −1

Fig. 6. Application of the algorithm on example Fib. Again, technically, i and j in
the open goals are Skolem terms like fa(xa, xb) in Fig. 4. In iteration no. 6, the non-
termination proof can be closed with the constraint [xn < 1 ∧ −2 < xn] for the free
variables. This result expresses that for n being 0 or −1, Fib does not terminate. The
following invariants were dismissed by the filters because of inconsistency: j > xn ∧j <
1 + xn, j < xn ∧ j > xn − 1, and j > xn ∧ xn < 1 ∧ j < 1 + xn.

to a closed proofs. In some cases this led to the situation that the algorithm
reached the limit of iterations before a suitable invariant was found. This is also
the case when the target program is actually terminating for all initial states. The
average number of iterations in successful cases (that means a suitable invariant
was found) lay between 1.5 and 3.5 depending on the heuristics.

The example Lcm of Sect. 4 was solved in all experiments. The number of
necessary iterations lay between 2 and 8 iterations. The example Fib was solved
by some of the experiments and their number of iterations was between 6 and
39 iterations. The best run is illustrated in Fig. 6. Using the creation method
IneqVar, the number of iteration raises (depending on the heuristics). An in-
variant which was found in this case is j > Lj ∧ i > Li, where the proof was
closed with the (simplified) constraint [Lj = −1 ∧ Li = −1 ∧ x < 0]. Invariant
and constraint describe the situation where the input value n is negative and
the variables j and i are non-negative (which is always the case).

The example set and the implementation of the software is publicly available
at http://www.key-project.org/nonTermination/.

6 Related Work

Although the development of termination checkers is a flourishing research sub-
ject, we only know of two methods (and implementations) that are directly
comparable to the non-termination analysis presented in this paper:

http://www.key-project.org/nonTermination/

168 H. Velroyen and P. Rümmer

The more similar approach is [11], which uses concolic program execution to
search for lassos (loops) in a program, and constraint solving for proving the
feasibility of lassos. The latter part is similar to the invariant generation method
shown in the present paper, but it does not make use of counterexamples to refine
invariant candidates. Because we use purely symbolic reasoning to determine
critical initial program states, it can also be expected that our approach is able
to derive more general descriptions of such input states than [11], at the cost of
being less scalable.

Secondly, the AProVE system [12] is able to prove both the termination and
non-termination of term rewrite systems [13] and is in principle also applicable to
imperative programs: such programs can be analysed after a suitable translation
to rewrite systems [2]. So far, existing translations are incomplete, however,
which means that the resulting rewrite system might be non-terminating even
if the original program is terminating.

Construction of invariants using invariant templates and constraint solving is
an approach that is employed in many contexts, e.g., [14,15]. The principle is
usually not embedded in a program logic as it is done in the present paper.

The iterative refinement of invariants described in this paper has some sim-
ilarities to iterative backwards-propagation of assertions, which is described in
[16] but can, in some form or another, be found in many static program analysis
techniques.

7 Conclusion and Future Work

We have introduced a novel approach to automated detection of non-termination
defects in software programs. The approach is built on the basis of a sequent
calculus for dynamic logic and works by generating invariants that prove the
unreachability of terminating states. In experiments, the majority of our example
programs could automatically be proven non-terminating. Furthermore, when
experimenting with more complex non-terminating Java programs [5], we found
that also here it is often possible to find small and simple invariants that witness
non-termination. The intuitive explanation for this is that (i) the usage of the
invariant rule While (with anonymising updates) allows to ignore those parts
of the program state that are not changed in the loop, and that (ii) the precise
character of state changes caused by a loop can be ignored in the invariant as
well, as long as non-termination is preserved. Although further investigations
concerning such programs are necessary, this indicates that our method is also
applicable to programs that operate on heap data structures.

When moving fromthe while-language to actual Java-likeprograms,one modifi-
cation of the algorithm that appears helpful is to automatically add heap-
wellformedness conditions to the invariant candidates. Partly, this is a consequence
of using dynamic logic for Java [8, Sect. 3], in which properties like “attributes of
allocated objects only point to allocated objects” are non-trivial and can be diffi-
cult to synthesise for the invariant generator. Another aspect that becomes more
central with Java programs is the detection of the variables and heap locations that

Non-termination Checking for Imperative Programs 169

a loop can assign to. It might be useful to determine also these locations incremen-
tally and simultaneously with the loop invariant, based on failed proof attempts.

As a prerequisite for more extensive experiments, we want to develop an im-
plementation of our non-termination checker that is more tightly integrated with
the program verification tool used. This way, we expect to achieve a significantly
higher performance. On the more theoretic level, we are in the process of investi-
gating the usage of closure constraints (Sect. 3) more systematically in order to
define fragments of first-order logic with integer arithmetic for which the calculus
is complete, and in order to further develop the approach.

Acknowledgements

We like to thank the following people for constructive feedback and support:
Richard Bubel, Prof. Reiner Hähnle, Mattias Ulbrich, Benjamin Weiss and all
others of the KeY-group. Besides we like to thank Prof. Giesl for supporting the
diploma thesis which was the base for this paper.

References

1. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

2. Sondermann, M.: Automatische Terminierungsanalyse von imperativen Program-
men. Master’s thesis, RWTH Aachen University, Aachen, Germany (2006)

3. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for
Java Dynamic Logic. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454,
pp. 41–60. Springer, Heidelberg (2007)

4. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996)

5. Velroyen, H.: Automatic non-termination analysis of imperative programs. Master’s
thesis, Chalmers University of Technology, Aachen Technical University, Göteborg,
Sweden and Aachen, Germany (2007)

6. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge (1993)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
8. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
9. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gener-

ation. In: Proceedings of 4th International Verification Workshop (VERIFY 2007).
CEUR, vol. 259 (2007), http://ceur-ws.org/

10. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560. Springer,
Heidelberg (2001)

11. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: Necula, G.C., Wadler, P. (eds.) ACM Symposium on Princi-
ples of Programming Languages (POPL), San Francisco, USA, pp. 147–158. ACM,
New York (2008)

http://ceur-ws.org/

170 H. Velroyen and P. Rümmer

12. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJ-
CAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

14. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Baader, F., Baumgartner, P., Nieuwenhuis, R., Voronkov, A. (eds.) Deduc-
tion and Applications. Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany,
vol. 05431 (2006)

15. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

16. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-
mediate assertions. Theor. Comput. Sci. 173(1), 49–87 (1997)

Parameterized Unit Testing with Pex

(Tutorial)

Jonathan de Halleux and Nikolai Tillmann

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

{jhalleux,nikolait}@microsoft.com

Abstract. This hands-on tutorial will teach the principles of Parame-
terized Unit Testing [5,4] with Pex [2], an automatic test input generator
for .NET which performs a systematic program analysis, similar to path
bounded model-checking.

A parameterized unit test is simply a method that takes parameters,
calls the code under test, and states assertions.

1 Unit Tests

A unit test is a self-contained program that checks an aspect of the implemen-
tation under test. A unit is the smallest testable part of the program.

Here is a typical unit test of the array list that describes the normal behavior
of the Add method with respect to the indexing operator [].

public void SomeAddTest () {
// exemplary data
object element = new object ();
ArrayList list = new ArrayList (1);
// method sequence
list.Add(element);
// assertions
Assert.IsTrue(list [0] == element);

}

We partition each unit test into three parts.

– Unit tests take exemplary data as test inputs that are passed to the called
methods.

– Unit tests consist of a method sequence which represents a typical scenario
for the usage of an API.

– Assertions encode the test oracle of a unit test. The test fails if any assertion
fails or an exception is thrown but not caught.

The above unit test specifies the behavior of the array list by example. Strictly
speaking, this unit test only says that by adding a new object to an empty array
list, this object becomes the first element of the list. What about other array
lists and other objects?

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 171–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 J. de Halleux and N. Tillmann

2 Parameterized Unit Tests (PUTs)

A straightforward extension is to allow parameters for unit tests. Here is a pa-
rameterized version of the array list unit test. Under the condition that a given
array list is not null, this parameterized unit test asserts that after adding an
element to the list, the element is indeed present at the end of the list:

public void SomeAddSpec (
// data
ArrayList list , object element) {
// assumptions
PexAssume .IsTrue(list != null);
// method sequence
int len = list.Count;
list.Add(element);
// assertions
PexAssert .IsTrue(list[len] == element);

}

This test is more general than the original test. It states that for all non-
null array lists, and all objects, after adding the object to the array list, it is
contained at the end.

Parameterized unit tests like this one can be called with various input values,
perhaps drawn from an attached database. Unit testing frameworks that support
parameterized unit tests sometimes refer to them as data-driven tests (e.g. in [2]).

Unlike many other forms of specification documents, PUTs are written on the
level of the actual software APIs, in the programming language of the software
project. This allows PUTs to evolve naturally with the code against which they
are written.

2.1 Separation of Concerns

Splitting the specification and test cases by parameterized unit testing is a sep-
aration of concerns:

– Firstly, we specify the intended external behavior of the software as PUTs;
only human beings can perform this specification task.

– Secondly, a tool like Pex can automatically create a test suite with high code
coverage by determining test inputs which exercise different execution paths
of the implementation.

2.2 Coverage through Test Generation

Adding parameters to a unit test improves its expressiveness as a specification
of intended behavior, but we lose concrete test cases. We can no longer execute a
parameterized test by itself. We need actual parameters. But which values must
be provided to ensure sufficient and comprehensive testing?

Let’s look at the code that implements Add and the indexing operator in the
.NET base class library.

Parameterized Unit Testing with Pex 173

public class ArrayList
...
{

private Object[] _items;
private int _size , _version;
...
public virtual int Add(Object value) {

if (_size == _items.Length)
EnsureCapacity (_size + 1);
_items[_size] = value;
_version ++;
return _size++;

}
}

There are two cases of interest. One occurs when adding an element to an
array list that already has enough room for the new element (i.e. the array list’s
capacity is greater than the current number of elements in the array list). The
other occurs when the internal capacity of the array list must be increased before
adding the element.

Let’s assume that the library methods invoked by the ArrayList implementa-
tion are themselves correctly implemented, i.e., EnsureCapacity guarantees that
the _items array is resized so its length is greater or equal _size + 1, and let’s
not consider possible integer overflows.

Then we only need to run two test cases to check that the assertion embedded
in SomeAddSpec holds for all array lists and all objects given the existing .NET
implementation.

[TestMethod]
public void TestAddNoOverflow () {

SomeAddSpec (new ArrayList (1), new object ());
}

[TestMethod]
public void TestAddWithOverflow () {

SomeAddSpec (new ArrayList (0), new object ());
}

We don’t need any other input to test Add, since any other input will execute
exactly the same paths as the two inputs mentioned above.

3 Dealing with the Environment

3.1 Unit Testing Is not Integration Testing

Each unit test, whether parameterized or not, should test a single feature, so
that a failing unit test identifies the broken feature as concisely as possible. Also,
the fewer system components a test interacts with, the faster it will run.

174 J. de Halleux and N. Tillmann

However, in practice it is oftendifficult to test features in isolation:The codemay
take a file name as its input, and use the operating system to read in the contents of
the file. Or the test may need to connect to another machine to fulfill its purpose.

The first step towards making the code testable is to introduce abstraction
layers. For example, the following Parse method is not testable in isolation, since
it insists on interacting with the file system.
public void Parse(string fileName) {

StreamReader reader = File.OpenText (fileName);
string line;
while ((line = reader.ReadLine ()) != null) {

...
}

}

The parser in the following code is better testable, since the actual parsing logic
can be driven from any implementation of the abstract StreamReader class. In par-
ticular, it is no longer necessary to go through the file system to test the main code.
public void Parse(string fileName) {

this.Parse(File.OpenText (fileName));
}

public void Parse(StreamReader reader) {
string line;
while ((line = reader.ReadLine ()) != null) {

...
}

}

Abstraction from the environment is necessary to systematically apply Pex.

3.2 Mock Objects

When the code is written with abstraction layers, mock objects [1] can be used
to substitute parts of the program that are irrelevant for a tested feature. Mock
objects answer queries with fixed values similar to those that the substituted
program would have computed.

Today, developers usually define the behavior of mock objects by hand. (By be-
havior, we mean the return values ofmocked methods, what exceptions they should
throw, etc.) Several frameworks [6] exist which provide stubs, i.e. trivial implemen-
tations of all methods of an interface or a class; these stubs don’t perform any ac-
tions by themselves and usually just return some default value. The behavior of
the stubs must still be programmed by the developer. (A capture-replay approach
is used in [3] to distill actual behavior of an existing program into mock objects.)

3.3 Parameterized Mock Objects

When manually writing mock objects, one of the main questions is: What values
should the mock object return? How many versions of a mock object do I need
to write to test my code thoroughly?

Parameterized Unit Testing with Pex 175

We have seen earlier how parameterized unit tests are a way to write general
tests that do not have to state particular test inputs. In a similar way, parame-
terized mock objects are a way to write mock objects which do not have just one
particular, fixed behavior.

Consider the method AppendFormat of the StringBuilder class in the .NET base
class library. Given a string with formatting instructions, and a list of values to
be formatted, it computes a formatted string. For example, formatting the string
"Hello {0}!" with the single argument "World" yields the string "Hello World!".

public StringBuilder AppendFormat (
IFormatProvider provider ,
string format , object[] args) {

...
}

The first parameter of type IFormatProvider “provides a mechanism for re-
trieving an object to control formatting” according to the MSDN documentation:

public interface IFormatProvider {
object GetFormat (Type fmtType);

}

A non-trivial test case calling AppendFormat needs an object that implements
IFormatProvider. Pex can automatically generate a mock type with stubs that
implements the interface:

[PexMock]
public class MFormatProvider : IFormatProvider {

public object GetFormat (Type fmtType) {
IPexMethodCallOracle call = PexOracle .Call(this);
return call.ChooseResult <object >();

}
}

The mock method GetFormat obtains from the global PexOracle a handle called
call that represents the current method call. The PexOracle provides the values
which define the behavior of the mocked methods, e.g. their return values.

When the test case is executed, ChooseResult will initially return some simple
value, e.g. null for reference types. Pex performs a dynamic symbolic analysis
that tracks how the value obtained from ChooseResult is used by the program.
(This is similar to how Pex tracks all other test inputs.) Depending on the
conditions that the program checks on the value obtained from ChooseResult,
Pex will execute the test case multiple times, trying other values that will be
different from null.

For example, the following call to GetFormat occurs in AppendFormat after
checking provider!=null:

cf = (ICustomFormatter)provider.GetFormat (
typeof(ICustomFormatter)

);

176 J. de Halleux and N. Tillmann

Depending on the result of GetFormat, the cast to ICustomFormatter might
fail. Pex understands this type constraint, and Pex generates a test case with
the following mock object behavior.

MFormatProvider m = new MFormatProvider ();
PexOracle .NewTest ()

.OnCall(0, typeof(MFormatProvider), "GetFormat ",
typeof(Type)

)
.Returns(m);

Here, Pex creates a mock object and instructs the oracle that during the exe-
cution of a unit test the first call to m.GetFormat should return the mock object
itself! (The test cases that Pex generate are always minimal, this is an example
of how Pex tries to use as few objects as possible to trigger a particular execu-
tion path.) This particular mock object behavior will cause the cast to fail, since
MFormatProvider does not implement ICustomFormatter.

3.4 Parameterized Mock Objects with Assumptions

Unconstrained mock objects can cause the code to behave in unexpected ways.
Just as you can state assumptions on the arguments of parameterized unit tests,
you can state assumptions on the results of mock object calls. For example, the
author of the IFormatProvider interface probably had the following contract in
mind:

public object GetFormat (Type fmtType) {
IPexMethodCallOracle call = PexOracle .Call(this);
object result = call.ChooseResult <object >();

// constraining result
PexAssume .IsTrue(result != null);
PexAssume .IsTrue(

fmtType.IsAssignableFrom (result.GetType ())
);

return result;
}

4 Exercises

Exercise 1: Getting started with Pex in Visual Studio

Part 1: Adding Pex to a Project

1. Add a reference to the Microsoft.Pex.Framework.dll assembly to the test
project. In the Add Reference dialog, select the .NET pane, then scroll
down to Microsoft.Pex.Framework,

Parameterized Unit Testing with Pex 177

Part 2: Creating a Parameterized Unit Test

1. In the HelloWorldTest, add a new public instance method ParameterizedTest

that takes an int parameter. Mark this method with the PexMethodAttribute.

[PexMethod]
public void ParameterizedTest (int i) {

if (i == 123)
throw new ArgumentException ("i");

}

Part 3: Run the Parameterized Unit Test

1. Move the mouse cursor inside the ParameterizedTest method, right-click and
select the Pex It menu item.

2. Pex automatically displays the Pex Results window. Most of your interac-
tions with Pex will be through this window.

3. Each row in the table corresponds to a generated test for the current explo-
ration. Each row contains
– an icon describing the status of the test (passing, failing),
– a number indicating how often Pex had to execute the parameterized

unit test with different input values in order to arrive at this test,
– a summary of the exception that occurred, if any

Pex also automatically logs the values of the input parameters of the test.
Note that often Pex runs the parameterized unit test for several times until

178 J. de Halleux and N. Tillmann

it outputs a test. The rationale behind this behavior is that Pex explores
different execution paths of the program, but it only outputs a new test
when this test increases the coverage (arc coverage, to be precise). Many
execution paths might have the same coverage.

4. When exploring the ParameterizedTest that we wrote earlier, Pex generates
two unit tests. Each unit test can be accessed by selecting the corresponding
row and clicking on the Go to generated test link.

[TestMethod]
public void ParameterizedTest_Int_71114_003426_0_00() {

this.ParameterizedTest (0);
}
[TestMethod , ExpectedException (typeof(ArgumentException))]
public void ParameterizedTest_Int_71114_003427_0_02() {

this.ParameterizedTest (123);
}

Exercise 2: Instrumentation Configuration. Pex can only generate a test
suite with high code coverage if Pex monitors the relevant parts of the code.
Therefore, it is most important to configure correctly which types Pex should
instrument.

Consider the following parameterized unit test.

[PexMethod (MaxBranches = 2000)]
public void Test(string s) {

DateTime dt = DateTime .Parse(s);
PexValue .Add("dt", dt);

}

When Pex generates tests, it will only generate a single test at first. However,
we do get a warning that some methods were not instrumented.

In the log view, Pex lists the uninstrumented methods. (You can switch be-
tween the parameter table and the log view by clicking on the Results: ...
Issues: ... instrumentation link in the link menu.)

Parameterized Unit Testing with Pex 179

We can select one of them, and click on the link “Instrument type” to tell
Pex that it should instrument this type in the future. Pex will insert custom
attributes such as the following for you.

using Microsoft .Pex.Framework .Instrumentation ;
[assembly: PexInstrumentType ("mscorlib ",

"System.DateTimeParse ")]
[assembly: PexInstrumentType ("mscorlib ",

"System.__DTString ")]

After you instruct Pex to instrument a type, you have to re-run Pex to see
the effects of more instrumentation. In turn, you might get more uninstrumented
method warnings.

Exercise 3: Path Conditions and Symbolic Values. The following method
Complicated checks that its input parameter x stands in an obscure relation to
its input parameter y.

int Complicated (int x, int y) {
if (x == Obfuscate (y))

throw new RareException ();
return 0;

}

int Obfuscate (int y) {
return (100 + y) * 567 % 2347;

}

Part 1: Solving constraints Call Complicated from a parameterized unit test, and
inspect which values Pex uses as test inputs.

Part 2: Observing constraints Pex generates test input by performing a symbolic
analysis of the code under test. You can use the method GetPathConditionString

of the PexSymbolicValue class to obtain a textual representation of the current
path condition, a predicate that characterizes an execution path. The following
code will add a column to the parameter table, and fill it in with the path
condition.

int Complicated (int x, int y) {
if (x == Obfuscate (y))

throw new RareException ();

// logging the path condition
string pc = PexSymbolicValue . GetPathConditionString();
PexValue .Add("pc", pc);

return 0;
}

180 J. de Halleux and N. Tillmann

The ToString method of the PexSymbolicValue class gives a textual represen-
tation of how a value was derived from the test inputs:

int Complicated2 (int x, int y) {
if (x == Obfuscate (y)) {

// logging the path condition
string obfuscateY =

PexSymbolicValue .ToString (Obfuscate (y));
PexValue .Add("obfuscate (y)", obfuscateY);
throw new RareException ();

}
return 0;

}

Exercise 4: Heap Constraints. Consider the following type

public class C { public int F; }

that is used in the following method.

public void AliasChallenge (C x, C y) {
if (x != null)

if (y != null) {
x.F = 42;
y.F = 23;
// if (x.F == 42) throw new Exception (" boom ");

}
}

How many execution paths will Pex have to explore? (Pex only generates differ-
ent test inputs when they exercise different execution paths.)

Exercise 5: Implicit Branches. The following method has two execution
paths.

public void ImplicitNullCheck (int[] a) {
int x = a.Length;

}

How many paths will Pex explore in the following method? (Note that Pex checks
for each possible exception type separately, and considers checks for different
exception types as different branches.)

public void ImplicitIndexOutOfRangeCheck(int[] a) {
int x = a[0];

}

Pex understands checked code as well. Pex finds inputs that will cause the
following method to throw an OverflowException.

public void ImplicitOverflowCheck (int x, int y) {
int z = checked(x + y);

}

Parameterized Unit Testing with Pex 181

Can you write a parameterized unit test that could cause an exception of type
InvalidCastException?

References

1. Mackinnon, T., Freeman, S., Craig, P.: Endotesting: Unit testing with mock objects.
In: XP 2000 (May 2000)

2. Pex development team. Pex (2007), http://research.microsoft.com/Pex
3. Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test factoring for Java. In:

Proc. 20th ASE, pp. 114–123. ACM Press, New York (2005)
4. Saff, D., Boshernitsan, M., Ernst, M.D.: Theories in practice: Easy-to-write specifica-

tions that catch bugs. Technical Report MIT-CSAIL-TR-2008-002, MIT Computer
Science and Artificial Intelligence Laboratory, Cambridge, MA, January 14 (2008)

5. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 253–262.
ACM, New York (2005)

6. Wiki. Mock objects, http://www.mockobjects.com

http://research.microsoft.com/Pex
http://www.mockobjects.com

Integrating Verification and Testing of

Object-Oriented Software

Christian Engel, Christoph Gladisch, Vladimir Klebanov, and Philipp Rümmer

www.key-project.org

Abstract. Formal methods can only gain widespread use in industrial
software development if they are integrated into software development
techniques, tools, and languages used in practice. A symbiosis of software
testing and verification techniques is a highly desired goal, but at the
current state of the art most available tools are dedicated to just one of
the two tasks: verification or testing. We use the KeY verification system
(developed by the tutorial presenters) to demonstrate our approach in
combining both.

1 What KeY Is

KeY is an approach and a system for the deductive verification of object-oriented
software. It aims for integrating design, implementation, and quality assurance
of software as seamlessly as possible. The intention is to provide a platform that
allows close collaboration between conventional and formal software development
methods.

Recently, version 1.0 of the KeY system has been released in connection
with the KeY book [2]. The KeY system is written in JAVA and runs on all
common architectures. It is available under GPL and can be downloaded from
www.key-project.org.

1.1 Towards Integration of Formal Methods

Formal methods can only gain widespread use in industrial software development
if they are integrated into software development techniques, tools, and languages
used in practice. KeY integrates with (currently two) well-known CASE tools:
Borland Together and the Eclipse IDE. Users can develop a whole software
project, comprised of specifications as well as implementations, entirely within
either of the mentioned CASE tools. The KeY plugin offers then the extended
functionality to generate proof obligations from selected parts of specifications
and verify them with the KeY prover. The core of the KeY system, the KeY
verification component, can also be used as a stand-alone prover, though.

The KeY project is constantly working on techniques to increase the returns
of using formal methods in the industrial setting. Recent efforts in this area
concentrate on applying verification technology to traditional software processes.
These have resulted in development of such approaches as symbolic debugging

B. Beckert and R. Hähnle (Eds.): TAP 2008, LNCS 4966, pp. 182–191, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.key-project.org

Integrating Verification and Testing of Object-Oriented Software 183

and verification-based testing. The latter is the central topic of this tutorial with
Section 3 explaining why and how to utilise synergies between verification and
testing.

1.2 Full Coverage of a Real-World Programming Language

To ensure acceptance among practitioners it is essential to support an industri-
ally relevant programming language as the verification target. We chose JAVA

Card source code [5] because of its importance for security- and safety-critical
applications.

For specification, KeY supports both the OMG standard Object Constraint
Language (OCL) [20] and the Java Modeling Language (JML) [16], which is
increasingly used in the industry. In addition, KeY features a syntax-directed
editor for OCL that can render OCL expressions in several natural languages
while they are being edited.

The KeY prover and its calculus [2] support the full JAVA CARD 2.2.1 language.
This includes all object-oriented features, JAVA CARD’s transaction mechanism,
the (finite) JAVA integer types, abrupt termination (local jumps and exceptions)
and even a formal specification (both in OCL [15] and JML1) of the essential
parts of the JAVA CARD API. In addition, some JAVA features that are not part
of JAVA CARD are supported as well: multi-dimensional arrays, JAVA class ini-
tialisation semantics, char and String types. In short, if you have a sequential
JAVA program without dynamic class loading and floating point types, then it is
(in principle) possible to verify it with KeY.

To a certain degree, KeY allows to customise the assumed semantics of JAVA

CARD. For instance, the user can choose between different semantics of the prim-
itive JAVA integer types. Options are: the mathematical integers (easy to verify,
but not a faithful model of JAVA and, hence, unsound), mathematical integers
with overflow check (sound, reasonably easy to verify, but incomplete for pro-
grams that depend on JAVA’s finite ring semantics), and a faithful semantics of
JAVA integers (sound and complete, but difficult to verify).

2 Foundations of KeY

2.1 The Logic

KeY is a deductive verification system, meaning that its core is a theorem prover,
which proves formulae of a suitable logic. Different deductive verification ap-
proaches vary in the choice of the used logic. The KeY approach employs a logic
called JAVA CARD DL, which is an instance of Dynamic Logic (DL) [12]. DL, like
Hoare Logic [14], has the advantage of transparency with respect to the program
to be verified. This means, programs are neither abstracted away into a less ex-
pressive formalism such as finite-state machines nor are they embedded into a
general purpose higher-order logic. Instead, the logic and the calculus “work”
1 See http://www.cs.ru.nl/∼woj/software/software.html

http://www.cs.ru.nl/~woj/software/software.html

184 C. Engel et al.

directly on the JAVA CARD source code. This transparency is extremely helpful
for proving problems that require a certain amount of human interaction.

DL itself is a particular kind of modal logic. Different parts of a formula
are evaluated in different worlds (states), which vary in the interpretation of
functions and predicates. DL differs, however, from standard modal logic in that
the modalities are “indexed” with pieces of program code, describing how to
reach one world (state) from the other. Syntactically, DL extends full first-order
logic with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and [.] . (box).
In both cases, the first argument is a program, whereas the second argument is
another DL formula. Under program we understand a sequence of JAVA CARD

statements.
A formula 〈p〉ϕ is true in a state s if execution of p terminates normally when

started in s and results in a state where ϕ is true. As for the other operator, a
formula [p]ϕ is true in a state s if execution of p, when started in s, does either
not terminate normally or results in a state where ϕ is true.2

A frequent pattern of DL formulae is ϕ → 〈p〉ψ, stating that the program p,
when started from a state where ϕ is true, terminates with ψ being true after-
wards. The formula ϕ → [p]ψ, on the other hand, does not claim termination,
and has exactly the same meaning as the Hoare triple {ψ} p {φ}.

The following is an example of a JAVA CARD DL formula:

o1.f < o2.f → 〈int t=o1.f; o1.f=o2.f; o2.f=t;〉 o2.f < o1.f

It says that, when started in any state where the integer field f of o1 has a smaller
value than o2.f, the statement sequence “int t=o1.f; o1.f=o2.f; o2.f=t;”
terminates, and afterwards o2.f is smaller than o1.f.

The main advantage of DL over Hoare logic is increased expressiveness: one
can express not merely program correctness, but also security properties, cor-
rectness of program transformations, or the validity of assignable clauses. Also,
a pre- or postcondition can contain programs themselves, for instance to express
that a linked structure is acyclic. A full account of JAVA CARD DL is found in
the KeY book [2].

2.2 Verification as Symbolic Execution

The actual verification process in KeY can be viewed as symbolic execution of
source code. Unbounded loops and recursion are either handled by induction
over data structures occurring in the verification target or by specifying loop
invariants and variants. Symbolic execution plus induction as a verification par-
adigm was originally suggested for informal usage by Burstall [4]. The idea to
use Dynamic Logic as a basis for mechanising symbolic execution was first re-
alised in the Karlsruhe Interactive Verifier (KIV) tool [13]. Symbolic execution is
very well suited for interactive verification, because proof progress corresponds

2 These descriptions have to be generalised when non-deterministic programs are con-
sidered, which is not the case here.

Integrating Verification and Testing of Object-Oriented Software 185

to program execution, which makes it easy to interpret intermediate stages in a
proof and failed proof attempts.

Most program logics (e.g., Hoare Logic, wp-calculus) perform substitutions
on formulae to record state changes of a program. In the KeY approach to sym-
bolic execution, the application of substitutions is delayed as much as possible;
instead, the state change effect of a program is made syntactically explicit and
accumulated in a construct called updates. Only when symbolic execution has
completed are updates turned into substitutions. For more details about updates
we refer to [2].

The second foundation of symbolic execution, next to updates, is local pro-
gram transformation. JAVA (Card) is a complex language, and the calculus for
JAVA Card DL performs program transformations to resolve all the complex con-
structs of the language, breaking them down to simple effects that can be moved
into updates. For instance, in the case of try-catch blocks, symbolic execution
proceeds on the “active” statement inside the try block, until normal or abrupt
termination of that block triggers different transformations.

2.3 Automated Proof Search

For automated proof search, a number of predefined strategies are available in
KeY, which are optimised, for example, for symbolically executing programs or
proving pure first-order formulae.

In order to better interleave interactive and automated proof construction,
KeY uses a proof confluent sequent calculus, which means that automated proof
search does not require backtracking over rule applications. The automated
search for quantifier instantiations uses meta variables that are place-holders
for terms. Instead of backtracking over meta-variable instantiations, instantia-
tions are postponed to the point where the whole proof can be closed, and an
incremental global closure check is used. Rule applications requiring particular
instantiations (unifications) of meta variables are handled by attaching unifica-
tion constraints to the resulting formulas [11].

KeY also offers an SMT-LIB backend3 for proving near-propositional proof
goals with external decision procedures.

2.4 User-Friendly Graphical User Interface

Despite a high degree of automation (see Sect. 2.3), in many cases there are
significant, non-trivial tasks left for the user. For that purpose, the KeY system
provides a user-friendly graphical user interface (GUI). When proving a property
which is too involved to be handled fully automatically, certain rule applications
need to be performed in an interactive manner, in dialogue with the system. This
is the case when either the automated strategies are exhausted, or else when the
user deliberately performs a strategic step (like a case distinction) manually,
before automated strategies are invoked (again). In the case of human-guided

3 See http://combination.cs.uiowa.edu/smtlib/

http://combination.cs.uiowa.edu/smtlib/

186 C. Engel et al.

rule application, the user is asked to solve tasks like: selecting a proof rule to
be applied, providing instantiations for the proof rule’s schema variables, or
providing instantiations for quantified variables of the logic. These tasks are
supported by dynamic context menus and drag-and-drop.

Other supported forms of interaction in the context of proof construction are
the inspection of proof trees, the pruning of proof branches, stepwise backtrack-
ing, and the triggering of proof reuse.

3 Integrating Verification and Testing

3.1 Why Integrate

Although deductive verification can achieve a level of reliability of programs
that goes beyond most other analysis techniques, there are reasons to augment
fully-symbolic reasoning about programs with execution of concrete tests. We
distinguish two classes of reasons.

The first class involves failing or inapplicable verification. In many common
cases it is impossible to apply verification successfully: be it because no full for-
mal specification is available, because verification is too costly, or simply because
the program at hand proves to be incorrect. Moreover, once a verified program
is (even slightly) changed, existing correctness proofs become invalid and have
to be repeated. We will show how verification technology can be applied also
in such situations by generating test-cases based on symbolic execution of pro-
grams [10,1], and by turning proof search into a systematic bug search [18].

The second class is due to principal shortcomings of formal verification. Sym-
bolic reasoning about programs on the source code level does not take all phe-
nomena into account that can occur during the actual program execution. It
happens routinely that a JAVA CARD application works perfectly on the desk-
top emulator, but behaves erroneously once deployed on the card. This is typi-
cally because the card does not provide a JAVA CARD virtual machine that fully
complies with the semantic model used for the verification. As it is simply too
complex to formally specify and verify compilers, protocols, smart card operat-
ing systems, virtual machine implementations, etc., testing is essential even if
a complete proof has been found. The KeY system can automatically generate
test-cases from proofs and thus simplifies testing after verification.

3.2 Generating Test Cases from Proofs

The KeY tool integrates all necessary steps for generating comprehensive JU-
nit tests for white-box testing. The major steps are (1) computation of path
conditions with verification technology, (2) generation of concrete test data by
constraint solving, and (3) generation of test oracles. The KeY tool can also
be combined with existing black-box tools by outsourcing the second and third
steps and achieving synergy effects between the tools.

In the following, we assume that we have a program under test p (PUT) and
its specification φ, which can be a contract (i.e., a pre- and a postcondition) or

Integrating Verification and Testing of Object-Oriented Software 187

an invariant. Even very simple specifications yield useful test cases: A specifica-
tion of total correctness with a postcondition true is sufficient to generate tests
detecting uncaught exceptions.

3.3 Test-Case Generation by Bounded Symbolic Execution

The proof obligation resulting from the program p and the property φ is input
into the KeY system, which symbolically executes p for up to a fixed number
of steps. This produces a bounded symbolic execution tree, from which feasible
execution paths and branches with the corresponding path and branch conditions
are easily extracted. With the help of external arithmetics decision procedures
like Simplify [9] or Cogent [8], concrete models for these path conditions are
computed. These serve as test inputs for p. The property φ is translated into
a test oracle. Thus, we obtain a test case for every feasible execution path of p
(below the bound). The output of the process is a complete JUnit test case suite
that requires no further modifications.

Let us consider a simple example program:
/*@ ������ ��	
���������	

@ ���	� (
@ ���	��� ��� i; 0<=i && i<arr.length; arr[i]<=�	����);
@*/

������ ��� getMax(���[] arr){
��� max = arr[0];
��	(��� i=1; i<arr.length; i++){
��(arr[i]<max) max = arr[i];

}
	��	� max;

}

The JML specification requires that getMax() terminates normally (without
raising an exception) and the returned result is greater or equal than each of
arr’s entries. This postcondition is translated by KeY into a test oracle, with
universal quantifiers mimicked by loops:
�	���� ������ oracle(��� result, ���[] arr){
������ b = �	�

��	(��� i=0; i<arr.length; i++){
b = b && arr[i]<=result;

}
	��	� b;

}

Since we made no assumptions on arr.length, the number of loop iterations
is bounded only by Integer.MAX_VALUE. Since the number of feasible execu-
tion paths through the loop is 2arr.length (due to the �� statement), it is
technically not possible to create a test satisfying full feasible path coverage.

Nonetheless, we still get useful test cases if we symbolically execute the code
by unrolling the ��	 loop a bounded number of times, for instance just once.

188 C. Engel et al.

These tests already catch both implementation bugs contained in getMax(). We
now describe this in more detail.

The evaluation of the first statement max = arr[0]; induces the following
case distinction:

(1) arr �= ���� ∧ arr.length ≥ 1: The execution proceeds normally. The path
condition on this execution path is feasible.

(2) arr = ����: A NullPointerException is raised, but this branch condition
is contradictory to the implicit JML assumption that arguments of a method
are not ����, unless declared nullable. KeY recognises this infeasibility and
does not generate a test case.

(3) arr.length < 1: An ArrayIndexOutOfBoundsException is raised. This
branch condition is feasible, and a test generated for this path detects that
the implementation is erroneous, since we required normal termination of
getMax().

The symbolic execution now proceeds on the path (1) with unrolling the ��	

loop once. After the first iteration of the loop we end up with an open proof
tree containing 4 different feasible execution paths (of which 2 have not yet
terminated) with path conditions:

(4) arr.length < 1: This path is identical to the path (3) above.
(5) arr.length = 1: The loop is never entered, since the loop guard is false.
(6) arr.length > 1 ∧ arr[1] < arr[0]: The guard arr[i]<max of the ��

statement is true, and max is set to arr[1]. This violates the postcondition.
(7) arr.length > 1 ∧ arr[1] ≥ arr[0]: The guard of the �� statement is

false. The postcondition is also possibly violated on this path, namely in
case arr[1] �= arr[0].

The four test cases generated from this proof tree exercise getMax() on the
paths (4)–(7). The test for (4) initialises arr with �� ���[0] and reports an
error due to an exception thrown by getMax(). The test for (5) succeeds, while
the tests for (6) and (7) report failures due to results not accepted by the test
oracle.

3.4 Test-Case Generation from Method Specifications and Loop
Invariants

An obvious deficiency of bounded symbolic execution is that it only explores a
part of all program behaviours. The following example shows the problematic
situation.
����� Bar {
����� ���[] arr = �� ���[16];
���� foo() {
��� max = getMax(arr);
��(max<0) { A(); }

}
}

Integrating Verification and Testing of Object-Oriented Software 189

We assume a correct implementation of getMax(), which is applied to a fixed-
length buffer. In order to compute a path condition for the execution of the
method A() the unwinding bound for symbolic execution of the loop in getMax()
must be at least 16. This value, in general, is not practicable due to the expo-
nential growth of execution trees. Even worse, the minimal unwinding bound of
a loop for executing a certain branch is generally unknown.

An extension of the bounded approach allows generation of test cases based
on loop invariants and method specifications in combination with symbolic exe-
cution. A loop or a method call is in this case replaced by the invariant resp. the
method specification. With this technique we can compute precise conditions for
entering a branch, even if the path passes through a loop or a method invocation.

For example the desired path condition for executing the method A() in the
code above is: ∀i. 0 ≤ i∧ i < 16 → arr[i] < 0. This path condition is computed
with our approach by using the branch condition max < 0 and the postcondition
of getMax().

3.5 White-Box Testing by Combining Specification Extraction and
Black-Box Testing

Existing black-box testing tools [7,3,6,17] can be augmented by KeY to provide
white-box testing capabilities. In this case, the external tool generates the test
inputs and the oracle, while KeY provides information about program structure.

This information is extracted from the symbolic execution tree and input into
the black-box testing tool as a part of the program specification. We call this
process “structure-preserving specification extraction”. The whole approach is
illustrated in Figure 1.

Depending on the methods used for its extraction, the specification may not
cover iterations of loops above a certain limit. However, by combining the ex-
tracted specification with a given requirement specification, black-box testing
methods can generate tests that exercise random amounts of loop iterations in-
cluding those not covered by the extracted specification alone. In this way, it
is also possible to achieve a combination of code coverage and data coverage
criteria from both techniques.

Fig. 1. White-box testing as black-box testing with path extraction

190 C. Engel et al.

3.6 Proving Incorrectness of Programs

All approaches to find program defects that have been described so far make use
of the symbolic execution and reasoning capabilities of KeY without actually
aiming at the construction of a complete proof. Due to the generality of JAVA

CARD DL, however, the problem can also be approached head-on by simply
proving the incorrectness of a program [18]. This is done by showing a negated
and existentially quantified correctness formula:

∃ pre-state. ¬
(
preconditions → 〈 statements 〉 postconditions

)
(1)

in which statements represents the program in question and ∃ pre-state. exis-
tentially quantifies all variables, class members and array components that can
be read by the program. Formula (1) is true if and only if there is a pre-state
in which the preconditions hold, the program fragment does not terminate, or
terminates and the postconditions do not hold in the final state. With the help of
meta variables (Sect. 2.3) for handling the existential quantifier, symbolic execu-
tion and the proof search strategy mechanism, KeY is quite capable to discharge
such disproving obligations automatically.

Like the discovery of a failing test case, the ability to prove (1) reveals
a program defect.4 The program state for which this happens can be recov-
ered by analysing the proof and extracting the values that were chosen when
eliminating the quantifier in (1). Because only symbolic execution of the pro-
gram is involved, this can even yield descriptions of whole classes of states,
in the style of: “the program fails whenever x is greater than y.” For the
program getMax() on page 187, for instance, KeY can automatically find the
counterexamples arr.length = 1, arr.length = 2 ∧ arr[0] < arr[1] and
arr.length = 3 ∧ arr[0] < arr[1] ∧ arr[0] ≤ arr[2].

Symbolic incorrectness proofs can also discover defects that are inaccessible
to normal testing, for instance the divergence of programs [19]. In order to show
that a program does not terminate (for a particular pre-state), it has to be
proven that no terminal state is reachable. This can be done by synthesising an
invariant that approximates the set of reachable states, and which excludes all
terminal states.

References

1. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based specifi-
cation extraction and black-box testing. In: Gurevich, Y. (ed.) Proceedings, Testing
and Proofs, Zürich, Switzerland. LNCS, Springer, Heidelberg (2007)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: Proceedings, International Symposium on Software Testing and
Analysis, Roma, Italy, pp. 123–133. ACM, New York (2002)

4 But it should be noted that incorrectness proofs cannot detect bugs in other com-
ponents like the compiler or the runtime environment, in contrast to testing.

Integrating Verification and Testing of Object-Oriented Software 191

4. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier/North-Holland (1974)

5. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide, June 2000. Java Series. Addison-Wesley, Reading (2000)

6. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing
for Java programs. In: Proceedings, Software Engineering Research and Practice
(SERP), Las Vegas, USA, pp. 290–295. CSREA Press (2005)

7. Cheon, Y., Rubio-Medrano, C.E.: Random test data generation for Java classes an-
notated with JML specifications. In: Software Engineering Research and Practice,
pp. 385–391 (2007)

8. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for
program verification. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 296–300. Springer, Heidelberg (2005)

9. Detlefs, D., Nelson, G., Saxe, J.: Simplify: A Theorem Prover for Program Check-
ing. Technical Report HPL-2003-148, HP Labs (July 2003)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

11. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560. Springer,
Heidelberg (2001)

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution and

induction. In: Morik, K. (ed.) Proceedings, 11th German Workshop on Artificial
Intelligence. Informatik Fachberichte, vol. 152, Springer, Heidelberg (1987)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580, 583 (1969)

15. Larsson, D., Mostowski, W.: Specifying Java Card API in OCL. In: Schmitt, P.H.
(ed.) OCL 2.0 Workshop at UML 2003. ENTCS, vol. 102C, pp. 3–19. Elsevier,
Amsterdam (2004)

16. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. Draft Revision 1.200 (February
2007)

17. Parasoft. JTest manual (2004), http://www.parasoft.com/jtest
18. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for

Java Dynamic Logic. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454,
pp. 41–60. Springer, Heidelberg (2007)

19. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Meyer, B. (ed.) TAP 2008, Prato, Italy (to appear, 2008),
http://www.key-project.org/nonTermination/

20. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series. Addison-Wesley, Reading (2003)

http://www.parasoft.com/jtest
http://www.key-project.org/nonTermination/

Author Index

Ball, Thomas 4

Calvagna, Andrea 66
Cao, Zining 30
Carlier, Matthieu 84
Claessen, Koen 48

de Halleux, Jonathan 134, 171
Dubois, Catherine 84
Dunets, Andriy 99

Engel, Christian 182

Ferrara, Pietro 116

Gargantini, Angelo 66
Gladisch, Christoph 182

Hennell, Michael 1

Klebanov, Vladimir 182
Kupferman, Orna 4

Ostrand, Thomas J. 18

Reif, Wolfgang 99
Rümmer, Philipp 154, 182

Schellhorn, Gerhard 99
Svensson, Hans 48

Tillmann, Nikolai 134, 171

Velroyen, Helga 154

Weyuker, Elaine J. 18

	Title Page
	Preface
	Organization
	Table of Contents
	The First Thirty Years: Experience with Software Verification
	Vacuity in Testing
	Introduction
	Vacuity in Model Checking
	Vacuity Checking in Testing
	Vacuity in LTL Specifications
	Vacuity in Run-Time Verification
	Vacuity in Software Checking

	What Can Fault Prediction Do for YOU?
	Introduction
	The Basis for Prediction
	Empirical Studies
	Automating the Process
	Methodological Issues
	Related Work
	Conclusions

	Equivalence Checking for a Finite Higher Order ${\pi}$-Calculus
	Introduction
	Higher Order $\pi $-Calculus
	Syntax and Labelled Transition System of Higher Order -πCalculus
	Weak Bisimulations in Higher Order -Calculus

	A Linear Higher Order $\pi $-Calculus and Its Bisimulations
	Syntax of Linear Higher Order -πCalculus
	Linear Normal Bisimulation
	Finiteness of ${Pr}_L^c$
	The Equivalence between Weak Context Bisimulation and Weak Linear Normal Bisimulation for ${Pr}_L^c

	A Bisimulation Checking Algorithm WBC for Pr_L^c
	Normal Transition Graph
	The Algorithm WBC
	The Correctness of WBC

	A Complete Inference System for Linear Higher Order $\pi $-Calculus
	Context Congruence and Linear Normal Congruence
	The Equivalence between Weak Context Congruence and Weak Linear Normal Congruence for ${Pr}_L^c$
	Inference System WCE for ${Pr}_L^c$
	The Soundness and Completeness of the Inference System WCE

	Conclusions

	Finding Counter Examples in Induction Proofs
	Introduction
	Verification Method
	Failed Proof Attempts
	Identifying the Categories

	Finding Counter Examples by Random Testing
	QuickCheck
	Trace Counter Examples
	Induction Step Counter Examples

	Results
	Trace Counter Examples
	Induction Step Counter Examples

	Discussion and Conclusion

	A Logic-Based Approach to Combinatorial Testing with Constraints
	Introduction
	Combinatorial Coverage Strategies
	A Logic Approach to Pairwise Coverage
	Tests Generation
	Reduction
	Composing Test Predicates
	Composing and Ordering

	Adding Constraints
	Composition and Constraints
	User Defined Test Goals and Tests

	Early Evaluation
	Conclusions and Future Work

	Functional Testing in the Focal Environment
	Introduction
	The Focal Environment and Its Language
	Testing Properties
	Overview
	Testable Properties
	Elementary Properties
	Test Procedure

	Test Harness
	Structure
	Test Data Generation

	FocalTest Experimentation
	Coverage Analysis
	Pre-conditions and Pre-domains
	A MC/DC Like Criteria

	Related Work
	Conclusion and Future Work

	Bounded Relational Analysis of Free Data Types
	Introduction
	Related Work
	Outline

	Theorem Prover KIV
	Specification of Algebraic Data Types

	Alloy Analyzer
	Logic
	Model Finding
	Translation of KIV Formulas to Relational Form

	Generating Models of Free Data Types in Alloy
	Axiomatization of Recursive Functions
	Experimental Results
	Example: Lists of Intervals

	Conclusion

	Static Analysis Via Abstract Interpretation of the Happens-Before Memory Model
	Introduction
	The Running Example
	Abstract Interpretation

	The Happens-Before Memory Model
	Reasoning Statically
	The Running Example
	Notation

	Multithreaded Concrete Semantics
	Required Elements
	Thread Partitioned Concrete Domain
	Single Step Definition
	Fixpoint Semantics
	Launching a Thread
	The Running Example

	Multithreaded Abstract Semantics
	Required Elements
	Trace Partitioned Abstract Domain
	Upper Bound Operator and Abstraction Function
	step# Function
	Fixpoint Semantics
	Launching a Thread
	Complexity
	The Running Example

	Related Works
	Conclusion and Future Work
	Future Works

	Pex–White Box Test Generation for .NET
	Overview
	An Introduction to Pex
	Parameterized Unit Testing
	The Testing Problem
	The Testing Problem in Practice
	Symbolic Execution
	Dynamic Symbolic Execution
	More Reasons for Dynamic Symbolic Execution

	Pex Implementation Details
	Instrumentation
	Symbolic Representation of Values and Program State
	Symbolic Pointers
	Search Strategy
	Constraint Solving
	Pex Architecture
	Limitations

	Application
	Evaluation
	Related Work
	Conclusion

	Non-termination Checking for Imperative Programs
	Introduction
	Preliminaries
	Proving Non-termination: The Calculus Level
	Automatically Detecting Non-termination
	Experiments
	Related Work
	Conclusion and Future Work

	Parameterized Unit Testing with Pex (Tutorial)
	Unit Tests
	Parameterized Unit Tests (PUTs)
	Separation of Concerns
	Coverage through Test Generation

	Dealing with the Environment
	Unit Testing Is not Integration Testing
	Mock Objects
	Parameterized Mock Objects
	Parameterized Mock Objects with Assumptions

	Exercises

	Integrating Verification and Testing of Object-Oriented Software
	What KeY Is
	Towards Integration of Formal Methods
	Full Coverage of a Real-World Programming Language

	Foundations of KeY
	The Logic
	Verification as Symbolic Execution
	Automated Proof Search
	User-Friendly Graphical User Interface

	Integrating Verification and Testing
	Why Integrate
	Generating Test Cases from Proofs
	Test-Case Generation by Bounded Symbolic Execution
	Test-Case Generation from Method Specifications and Loop Invariants
	White-Box Testing by Combining Specification Extraction and Black-Box Testing
	Proving Incorrectness of Programs

	Author Index

